Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae

被引:42
|
作者
Lane, Stephan [1 ,2 ,3 ]
Zhang, Yanfei [4 ]
Yun, Eun Ju [1 ]
Ziolkowski, Leah [1 ,2 ,3 ]
Zhang, Guochang [1 ]
Jin, Yong-Su [1 ,2 ,3 ]
Avalos, Jose L. [4 ,5 ,6 ]
机构
[1] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL 61801 USA
[2] Univ Illinois, DOE Ctr Adv Bioenergy & Bioprod Innovat, Urbana, IL USA
[3] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL USA
[4] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[5] Princeton Univ, Andlinger Ctr Energy & Environm, Princeton, NJ 08544 USA
[6] Princeton Univ, Dept Mol Biol, Princeton, NJ USA
关键词
branched-chain alcohols; isobutanol; metabolic engineering; Saccharomyces cerevisiae; xylose; METABOLISM; PATHWAY; STRAIN; IDENTIFICATION; MITOCHONDRIA; GLUCOSE;
D O I
10.1002/bit.27202
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Bioconversion of xylose-the second most abundant sugar in nature-into high-value fuels and chemicals by engineered Saccharomyces cerevisiae has been a long-term goal of the metabolic engineering community. Although most efforts have heavily focused on the production of ethanol by engineered S. cerevisiae, yields and productivities of ethanol produced from xylose have remained inferior as compared with ethanol produced from glucose. However, this entrenched focus on ethanol has concealed the fact that many aspects of xylose metabolism favor the production of nonethanol products. Through reduced overall metabolic flux, a more respiratory nature of consumption, and evading glucose signaling pathways, the bioconversion of xylose can be more amenable to redirecting flux away from ethanol towards the desired target product. In this report, we show that coupling xylose consumption via the oxidoreductive pathway with a mitochondrially-targeted isobutanol biosynthesis pathway leads to enhanced product yields and titers as compared to cultures utilizing glucose or galactose as a carbon source. Through the optimization of culture conditions, we achieve 2.6 g/L of isobutanol in the fed-batch flask and bioreactor fermentations. These results suggest that there may be synergistic benefits of coupling xylose assimilation with the production of nonethanol value-added products.
引用
收藏
页码:372 / 381
页数:10
相关论文
共 50 条
  • [1] Xylose Assimilation for the Efficient Production of Biofuels and Chemicals by Engineered Saccharomyces cerevisiae
    Sun, Liang
    Jin, Yong-Su
    BIOTECHNOLOGY JOURNAL, 2021, 16 (04)
  • [2] Systematic improvement of isobutanol production from d-xylose in engineered Saccharomyces cerevisiae
    Peerada Promdonkoy
    Wiparat Siripong
    Joe James Downes
    Sutipa Tanapongpipat
    Weerawat Runguphan
    AMB Express, 9
  • [3] Systematic improvement of isobutanol production from D-xylose in engineered Saccharomyces cerevisiae
    Promdonkoy, Peerada
    Siripong, Wiparat
    Downes, Joe James
    Tanapongpipat, Sutipa
    Runguphan, Weerawat
    AMB EXPRESS, 2019, 9 (01)
  • [4] Isobutanol production from D-xylose by recombinant Saccharomyces cerevisiae
    Brat, Dawid
    Boles, Eckhard
    FEMS YEAST RESEARCH, 2013, 13 (02) : 241 - 244
  • [5] Enhanced Isoprenoid Production from Xylose by Engineered Saccharomyces cerevisiae
    Kwak, Suryang
    Kim, Soo Rin
    Xu, Haiqing
    Zhang, Guo-Chang
    Lane, Stephan
    Kim, Heejin
    Jin, Yong-Su
    BIOTECHNOLOGY AND BIOENGINEERING, 2017, 114 (11) : 2581 - 2591
  • [6] Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain
    Vilela, Leonardo de Figueiredo
    Gomes de Araujo, Veronica Parente
    Paredes, Raquel de Sousa
    da Silva Bon, Elba Pinto
    Goncalves Torres, Fernando Araripe
    Neves, Bianca Cruz
    Araujo Eleutherio, Elis Cristina
    AMB EXPRESS, 2015, 5
  • [7] Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain
    Leonardo de Figueiredo Vilela
    Verônica Parente Gomes de Araujo
    Raquel de Sousa Paredes
    Elba Pinto da Silva Bon
    Fernando Araripe Gonçalves Torres
    Bianca Cruz Neves
    Elis Cristina Araújo Eleutherio
    AMB Express, 5
  • [8] Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae
    Turner, Timothy L.
    Zhang, Guo-Chang
    Oh, Eun Joong
    Subramaniam, Vijay
    Adiputra, Andrew
    Subramaniam, Vimal
    Skory, Christopher D.
    Jang, Ji Yeon
    Yu, Byung Jo
    Park, In
    Jin, Yong-Su
    BIOTECHNOLOGY AND BIOENGINEERING, 2016, 113 (05) : 1075 - 1083
  • [9] Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae
    Kato, Hiroko
    Matsuda, Fumio
    Yamada, Ryosuke
    Nagata, Kento
    Shirai, Tomokazu
    Hasunuma, Tomohisa
    Kondo, Akihiko
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2013, 116 (03) : 333 - 336
  • [10] Fine-tuning of xylose metabolism in genetically engineered Saccharomyces cerevisiae by scattered integration of xylose assimilation genes
    Zuo, Qi
    Zhao, Xin-Qing
    Xiong, Liang
    Liu, Hai-Jun
    Xu, You-Hai
    Hu, Shi-Yang
    Ma, Zhong-Yi
    Zhu, Qing-Wei
    Bai, Feng-Wu
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 440 (02) : 241 - 244