A Sparse Grid Stochastic Collocation Method for Elliptic Interface Problems with Random Input
被引:5
|
作者:
Zhang, Qian
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
Zhang, Qian
[1
]
Li, Zhilin
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
N Carolina State Univ, Dept Math, Box 8205, Raleigh, NC 27695 USANanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
Li, Zhilin
[1
,2
,3
]
Zhang, Zhiyue
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
Zhang, Zhiyue
[1
]
机构:
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
[2] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[3] N Carolina State Univ, Dept Math, Box 8205, Raleigh, NC 27695 USA
In this paper, numerical solutions of elliptic partial differential equations with both random input and interfaces are considered. The random coefficients are piecewise smooth in the physical space and moderately depend on a large number of random variables in the probability space. To relieve the curse of dimensionality, a sparse grid collocation algorithm based on the Smolyak construction is used. The numerical method consists of an immersed finite element discretization in the physical space and a Smolyak construction of the extreme of Chebyshev polynomials in the probability space, which leads to the solution of uncoupled deterministic problems as in the Monte Carlo method. Numerical experiments on two-dimensional domains are also presented. Convergence is verified and compared with the Monte Carlo simulations.
机构:
Ecole Polytech Fed Lausanne, MATHICSE, Math Inst Computat Sci & Engn, CMCS, CH-1015 Lausanne, Switzerland
Politecn Milan, Dipartimento Matemat F Brioschi, MOX, I-20133 Milan, ItalyEcole Polytech Fed Lausanne, MATHICSE, Math Inst Computat Sci & Engn, CMCS, CH-1015 Lausanne, Switzerland
Quarteroni, Alfio
Rozza, Gianluigi
论文数: 0引用数: 0
h-index: 0
机构:
Scuola Int Super Studi Avanzati, SISSA MathLab, I-34136 Trieste, ItalyEcole Polytech Fed Lausanne, MATHICSE, Math Inst Computat Sci & Engn, CMCS, CH-1015 Lausanne, Switzerland
机构:
LUNAM Univ, Ecole Cent Nantes, GeM UMR CNRS 6183, F-44321 Nantes, FranceLUNAM Univ, Ecole Cent Nantes, GeM UMR CNRS 6183, F-44321 Nantes, France
Nouy, A.
Soize, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, Lab Modelisat & Simulat Multiechelle, MSME UMR 8208, CNRS, F-77454 Marne La Vallee, FranceLUNAM Univ, Ecole Cent Nantes, GeM UMR CNRS 6183, F-44321 Nantes, France