High-Density Hotspots Engineered by Naturally Piled-Up Subwavelength Structures in Three-Dimensional Copper Butterfly Wing Scales for Surface-Enhanced Raman Scattering Detection

被引:109
作者
Tan, Yongwen [1 ]
Gu, Jiajun [1 ]
Xu, Linhua [1 ]
Zang, Xining [1 ]
Liu, Dingxin [1 ]
Zhang, Wang [1 ]
Liu, Qinglei [1 ]
Zhu, Shenmin [1 ]
Su, Huilan [1 ]
Feng, Chuanliang [1 ]
Fan, Genlian [1 ]
Zhang, Di [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
surface-enhanced Raman spectroscopy; biological templates; metals; three-dimensional nanostructures; PHOTONIC CRYSTALS; SERS; SPECTROSCOPY; ARRAYS; FABRICATION; NANOSTRUCTURES; NANOPARTICLES; LIGHT;
D O I
10.1002/adfm.201102948
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Very recently, wing scales of natural Lepidopterans (butterflies and moths) manifested themselves in providing excellent three dimensional (3D) hierarchical structures for surface-enhanced Raman scattering (SERS) detection. But the origin of the observed enormous Raman enhancement of the analytes on 3D metallic replicas of butterfly wing scales has not been clarified yet, hindering a full utilization of this huge natural wealth with more than 175 000 3D morphologies. Herein, the 3D sub-micrometer Cu structures replicated from butterfly wing scales are successfully tuned by modifying the Cu deposition time. An optimized Cu plating process (10 min in Cu deposition) yields replicas with the best conformal morphologies of original wing scales and in turn the best SERS performance. Simulation results show that the so-called rib-structures in Cu butterfly wing scales present naturally piled-up hotspots where electromagnetic fields are substantially amplified, giving rise to a much higher hotspot density than in plain 2D Cu structures. Such a mechanism is further verified in several Cu replicas of scales from various butterfly species. This finding paves the way to the optimal scale candidates out of ca. 175 000 Lepidopteran species as bio-templates to replicate for SERS applications, and thus helps bring affordable SERS substrates as consumables with high sensitivity, high reproducibility, and low cost to ordinary laboratories across the world.
引用
收藏
页码:1578 / 1585
页数:8
相关论文
共 49 条
[1]   Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing [J].
Abu Hatab, Nahla A. ;
Oran, Jenny M. ;
Sepaniak, Michael J. .
ACS NANO, 2008, 2 (02) :377-385
[2]   Tunable Colors in Opals and Inverse Opal Photonic Crystals [J].
Aguirre, Carlos I. ;
Reguera, Edilso ;
Stein, Andreas .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (16) :2565-2578
[3]   Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions [J].
Alvarez-Puebla, Ramon A. ;
Agarwal, Ashish ;
Manna, Pramit ;
Khanal, Bishnu P. ;
Aldeanueva-Potel, Paula ;
Carbo-Argibay, Enrique ;
Pazos-Perez, Nicolas ;
Vigderman, Leonid ;
Zubarev, Eugene R. ;
Kotov, Nicholas A. ;
Liz-Marzan, Luis M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (20) :8157-8161
[4]   Mapping the plasmon resonances of metallic nanoantennas [J].
Bryant, Garnett W. ;
De Abajo, F. Javier Garcia ;
Aizpurua, Javier .
NANO LETTERS, 2008, 8 (02) :631-636
[5]   Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors [J].
Caldwell, Joshua D. ;
Glembocki, Orest ;
Bezares, Francisco J. ;
Bassim, Nabil D. ;
Rendell, Ronald W. ;
Feygelson, Mariya ;
Ukaegbu, Maraizu ;
Kasica, Richard ;
Shirey, Loretta ;
Hosten, Charles .
ACS NANO, 2011, 5 (05) :4046-4055
[6]   Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing [J].
Camden, Jon P. ;
Dieringer, Jon A. ;
Zhao, Jing ;
Van Duyne, Richard P. .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) :1653-1661
[7]   Single-Order, Subwavelength Resonant Nanograting as a Uniformly Hot Substrate for Surface-Enhanced Raman Spectroscopy [J].
Deng, Xuegong ;
Braun, Gary B. ;
Liu, Sheng ;
Sciortino, Paul F., Jr. ;
Koefer, Bob ;
Tombler, Thomas ;
Moskovits, Martin .
NANO LETTERS, 2010, 10 (05) :1780-1786
[8]   Induced SER-Activity in Nanostructured Ag-Silica-Au Supports via Long-Range Plasmon Coupling [J].
Feng, Jiu-Ju ;
Gernert, Ulrich ;
Hildebrandt, Peter ;
Weidinger, Inez M. .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (12) :1954-1961
[9]   Spectroscopy on the wing: Naturally inspired SERS substrates for biochemical analysis [J].
Garrett, Natalie L. ;
Vukusic, Peter ;
Ogrin, Feodor ;
Sirotkin, Evgeny ;
Winlove, C. Peter ;
Moger, Julian .
JOURNAL OF BIOPHOTONICS, 2009, 2 (03) :157-166
[10]   Antitags: Nanostructured Tools for Developing SERS-Based ELISA Analogs [J].
Guarrotxena, Nekane ;
Liu, Bin ;
Fabris, Laura ;
Bazan, Guillermo C. .
ADVANCED MATERIALS, 2010, 22 (44) :4954-+