Solving Inverse Problems With Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity

被引:424
作者
Yu, Guoshen [1 ]
Sapiro, Guillermo [1 ]
Mallat, Stephane [2 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55414 USA
[2] Ecole Polytech, CMAP, F-91128 Palaiseau, France
基金
美国国家科学基金会;
关键词
Deblurring; Gaussian mixture models; interpolation; inverse problem; piecewise linear estimation; super-resolution; IMAGE INTERPOLATION; SCALE MIXTURES; EM ALGORITHM; RECOVERY; SIGNALS; REPRESENTATIONS; SUPERRESOLUTION; RECONSTRUCTION; REGULARIZATION; REGRESSION;
D O I
10.1109/TIP.2011.2176743
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A general framework for solving image inverse problems with piecewise linear estimations is introduced in this paper. The approach is based on Gaussian mixture models, which are estimated via a maximum a posteriori expectation-maximization algorithm. A dual mathematical interpretation of the proposed framework with a structured sparse estimation is described, which shows that the resulting piecewise linear estimate stabilizes the estimation when compared with traditional sparse inverse problem techniques. We demonstrate that, in a number of image inverse problems, including interpolation, zooming, and deblurring of narrow kernels, the same simple and computationally efficient algorithm yields results in the same ballpark as that of the state of the art.
引用
收藏
页码:2481 / 2499
页数:19
相关论文
共 84 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
Allassonnière S, 2007, J R STAT SOC B, V69, P3
[3]  
[Anonymous], WAVELET TOUR SIGNAL
[4]   Model-Based Compressive Sensing [J].
Baraniuk, Richard G. ;
Cevher, Volkan ;
Duarte, Marco F. ;
Hegde, Chinmay .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :1982-2001
[5]   Combining Mixture Components for Clustering [J].
Baudry, Jean-Patrick ;
Raftery, Adrian E. ;
Celeux, Gilles ;
Lo, Kenneth ;
Gottardo, Raphael .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (02) :332-353
[6]  
BESAG J, 1986, J R STAT SOC B, V48, P259
[7]  
Bioucas-Dias J. M., 2006, AC SPEECH SIGN PROC, V2, pII
[8]   A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration [J].
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) :2992-3004
[9]   MOMS:: Maximal-order interpolation of minimal support [J].
Blu, T ;
Thévenaz, P ;
Unser, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (07) :1069-1080
[10]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441