Rogue waves of a (3+1)-dimensional nonlinear evolution equation

被引:32
作者
Shi, Yu-bin [1 ]
Zhang, Yi [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 44卷
关键词
(3+1)-dimensional nonlinear evolution equation; Rogue waves; Hirota bilinear method; NLS EQUATION;
D O I
10.1016/j.cnsns.2016.07.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
General high-order rogue waves of a (3 + 1)-dimensional Nonlinear Evolution Equation ((3+1)-d NEE) are obtained by the Hirota bilinear method, which are given in terms of determinants, whose matrix elements possess plain algebraic expressions. It is shown that the simplest (fundamental) rogue waves are line rogue waves which arise from the constant background with a line profile and then disappear into the constant background again. Two subclass of nonfundamental rogue waves are analyzed in details. By proper means of the regulations of free parameters, the dynamics of multi-rogue waves and high order rogue waves have been illustrated in (x,t) plane and (y,z) plane by three dimensional figures. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:120 / 129
页数:10
相关论文
共 43 条
[1]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[2]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[3]   Rogue wave triplets [J].
Ankiewicz, Adrian ;
Kedziora, David J. ;
Akhmediev, Nail .
PHYSICS LETTERS A, 2011, 375 (28-29) :2782-2785
[4]   Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions [J].
Bailung, H. ;
Sharma, S. K. ;
Nakamura, Y. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[5]   Vector rogue waves in binary mixtures of Bose-Einstein condensates [J].
Bludov, Yu. V. ;
Konotop, V. V. ;
Akhmediev, N. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 185 (01) :169-180
[6]   Matter rogue waves [J].
Bludov, Yu. V. ;
Konotop, V. V. ;
Akhmediev, N. .
PHYSICAL REVIEW A, 2009, 80 (03)
[7]   Rational solutions to two- and one-dimensional multicomponent Yajima-Oikawa systems [J].
Chen, Junchao ;
Chen, Yong ;
Feng, Bao-Feng ;
Maruno, Ken-ichi .
PHYSICS LETTERS A, 2015, 379 (24-25) :1510-1519
[8]   Multi-rogue waves solutions: from the NLS to the KP-I equation [J].
Dubard, P. ;
Matveev, V. B. .
NONLINEARITY, 2013, 26 (12) :R93-R125
[9]   Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation [J].
Dubard, P. ;
Matveev, V. B. .
NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2011, 11 (03) :667-672
[10]   On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation [J].
Dubard, P. ;
Gaillard, P. ;
Klein, C. ;
Matveev, V. B. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 185 (01) :247-258