Spatial frequency response of nanocomposite holographic gratings

被引:1
|
作者
Tomita, Yasuo [1 ]
Nakamura, Toshihiro [1 ]
Rizky, Agyl F. [1 ]
Fujii, Ryota [1 ]
Guo, Jinxin [2 ,3 ]
机构
[1] Univ Electrocommun, Dept Engn Sci, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan
[2] Beijing Univ Technol, Inst Informat Photon Technol, Beijing 100124, Peoples R China
[3] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
来源
OPTICS, PHOTONICS, AND DIGITAL TECHNOLOGIES FOR IMAGING APPLICATIONS V | 2018年 / 10679卷
关键词
holographic photopolymer; nanocomposite material; nanoparticles; holographic recording; volume hologram; holographic data storage; diffractive optical elements; HEAD-MOUNTED DISPLAY; DISPERSED METHACRYLATE PHOTOPOLYMERS; DISTRIBUTION MORPHOLOGY; MASS-TRANSFER; LIGHT; FABRICATION;
D O I
10.1117/12.2312427
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the spatial frequency response of a volume grating recorded in a ZrO2 nanoparticle-dispersed nanocomposite. We experimentally find that there exists the optimum recording intensity to maximize the saturated refractive index modulation amplitude of a nanocomposite grating recorded at short and long grating spacing. A strong parametric relationship between grating spacing and recording intensity is seen and an increase in the saturated refractive index modulation amplitude at shorter grating spacing (< 0.5 mu m)can be obtained by using higher recording intensities than those at longer grating spacing. Such a trend can be qualitatively explained by a phenomenological model used for holographic polymer-dispersed liquid crystal gratings. We also describe another method for the improvement of the high spatial frequency response by co-doping of thiol monomer that acts as a chain-transfer agent.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] SPATIAL-FREQUENCY RESPONSE OF HOLOGRAPHIC GRATINGS PHOTODEPOSITED FROM INORGANIC COLLOIDS
    WEISS, V
    PELED, A
    FRIESEM, AA
    APPLIED OPTICS, 1994, 33 (22): : 4988 - 4992
  • [2] Spatial structure of holographic gratings in photorefractive crystals with a nonlocal response
    Bugaichuk, SA
    Kutana, AG
    Khizhnyak, AI
    QUANTUM ELECTRONICS, 1997, 27 (08) : 727 - 731
  • [3] Fourier analysis of high-spatial-frequency holographic phase gratings
    Bányász, I
    JOURNAL OF MODERN OPTICS, 2005, 52 (17) : 2443 - 2451
  • [4] ANTIREFLECTION EFFECT IN ULTRAHIGH SPATIAL-FREQUENCY HOLOGRAPHIC RELIEF GRATINGS
    ONO, Y
    KIMURA, Y
    OHTA, Y
    NISHIDA, N
    APPLIED OPTICS, 1987, 26 (06): : 1142 - 1146
  • [5] Holographic transmission gratings stored with high spatial frequency in PVA/AA photopolymers
    Fernandez, E.
    Fuentes, R.
    Ortuno, M.
    Belendez, A.
    Pascual, I.
    OPTICAL MODELLING AND DESIGN III, 2014, 9131
  • [6] The influence of spatial frequency in partial spatial erasure of holographic diffraction gratings within LiNbO3:Fe
    Ince, R.
    Yukselici, H.
    Ince, A. T.
    Tunc, A. V.
    OPTICS AND LASERS IN ENGINEERING, 2008, 46 (11) : 842 - 847
  • [7] Polarization and phase-shift properties of high spatial frequency holographic gratings in a photopolymerizable glass
    Martinez-Matos, Oscar
    Rodrigo, Jose A.
    Calvo, Maria L.
    Cheben, Pavel
    OPTICS LETTERS, 2009, 34 (04) : 485 - 487
  • [8] Advancing data analysis for reflectivity measurements of holographic nanocomposite gratings
    Klepp, Juegen
    Pruner, Christian
    Tomita, Yasuo
    Geltenbort, Peter
    Kohlbrecher, Joachim
    Fally, Martin
    VI EUROPEAN CONFERENCE ON NEUTRON SCATTERING (ECNS2015), 2016, 746
  • [9] Photopolymerizable Nanocomposite Gratings for Holographic Control of Slow Neutron Beams
    Tomita, Yasuo
    Kageyama, Akihisa
    Aoi, Toshi
    Iso, Yuko
    Umemoto, Koichi
    Klepp, Juergen
    Pruner, Christian
    Fally, Martin
    OPTICS, PHOTONICS AND LASERS, 2018, : 276 - 279
  • [10] High spatial resolution measurement of volume holographic gratings
    Steckman, Gregory J.
    Havermeyer, Frank
    PRACTICAL HOLOGRAPHY XX: MATERIALS AND APPLICATIONS, 2006, 6136