New opportunities in the design of gamma-camera collimators for medical imaging

被引:3
作者
Verdenelli, Lorenzo [1 ]
Montalto, Luigi [2 ]
Scalise, Lorenzo [1 ]
David, Stratos [3 ]
Loudos, George [4 ]
Rinaldi, Daniele [1 ]
Paone, Nicola [1 ]
机构
[1] Marche Polytech Univ, Dept Ind Engn & Math Sci DIISM, Ancona, Italy
[2] Marche Polytech Univ, Dept Sci & Engn Mat Environm & Urban Planning SIM, Ancona, Italy
[3] Univ West Attica, Sch Engn, Dept Biomed Engn, Athens, Greece
[4] Bioemiss Technol Solut BIOEMTECH, Athens, Greece
来源
2021 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS 2021) | 2021年
关键词
Additive Manufacturing; 3D printer; Nuclear medicine; collimator; gamma-camera; imaging; X-RAY;
D O I
10.1109/SAS51076.2021.9530134
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In nuclear medicine, the gamma camera is one of the more used imaging devices for radionuclide imaging. Gamma camera provide an image of the target organ, with high spatial resolution and sensitivity; gamma cameras use collimators. This paper presents a simple and customizable collimator to be used in radionuclide imaging for preclinical studies, using additive manufacturing (AM) techniques. A numerical analysis, based on GATE Monte Carlo toolkit (vGate 8.2), has been conducted to simulate different configurations of an already working collimator used as reference. In addition to the standard collimator geometry with alternatives materials, we also propose a new concept of collimator to be easily 3D printed, using different 3D printing technologies. We have simulated collimators with square apertures of 1.5 mm and septa of 0.4 mm of thickness, source was Tc99m. The materials simulated were standard tungsten, a PLA doped with tungsten (Rapid 3DShield Tungsten Filament - Virtual Foundry), a classical PLA filament and PA2200 for the new concept. The results show a similar behavior for what concern the spatial resolution, while for the sensitivity a reduction of about 45% of entries is reported. This is due mainly since the extruded pixel, made of PLA or PA2200, have higher density (approximate to 1.24 g/cm<^>3 for PLA and approximate to 0,95 g/cm<^>3 for PA2200) with respect to air (approximate to 0,0012 g/cm<^>3). Further studies are necessary to explore optimization of the used design to reduce the impact of material density.
引用
收藏
页数:6
相关论文
共 10 条
[1]  
Cherry S. R., 2012, Physics in Nuclear Medicine, P209, DOI 10.1016/B978-1-4160-5198-5.00014-9
[2]   λ-Eye: a high-sensitivity imaging probe for axillary sentinel lymph node mapping [J].
Georgiou, Maria ;
Loudos, George ;
Fysikopoulos, Eleftherios ;
Lamprou, Efthimis ;
Mikropoulos, Kwnstantinos ;
Shegani, Antonio ;
Georgoulias, Panagiotis .
NUCLEAR MEDICINE COMMUNICATIONS, 2016, 37 (10) :1001-1009
[3]  
Holdsworth D. W., 2017, PROC SPIE
[4]   GATE:: a simulation toolkit for PET and SPECT [J].
Jan, S ;
Santin, G ;
Strul, D ;
Staelens, S ;
Assié, K ;
Autret, D ;
Avner, S ;
Barbier, R ;
Bardiès, M ;
Bloomfield, PM ;
Brasse, D ;
Breton, V ;
Bruyndonckx, P ;
Buvat, I ;
Chatziioannou, AF ;
Choi, Y ;
Chung, YH ;
Comtat, C ;
Donnarieix, D ;
Ferrer, L ;
Glick, SJ ;
Groiselle, CJ ;
Guez, D ;
Honore, PF ;
Kerhoas-Cavata, S ;
Kirov, AS ;
Kohli, V ;
Koole, M ;
Krieguer, M ;
van der Laan, DJ ;
Lamare, F ;
Largeron, G ;
Lartizien, C ;
Lazaro, D ;
Maas, MC ;
Maigne, L ;
Mayet, F ;
Melot, F ;
Merheb, C ;
Pennacchio, E ;
Perez, J ;
Pietrzyk, U ;
Rannou, FR ;
Rey, M ;
Schaart, DR ;
Schmidtlein, CR ;
Simon, L ;
Song, TY ;
Vieira, JM ;
Visvikis, D .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (19) :4543-4561
[5]   Rapid prototyping of cost efficient X-ray collimators [J].
Khong, J. C. ;
Speller, R. ;
Dorkings, S. ;
Moss, K. ;
Moss, R. .
MANUFACTURING LETTERS, 2019, 20 :49-53
[6]   A novel 3D printed radial collimator for x-ray diffraction [J].
Kowarik, S. ;
Bogula, L. ;
Boitano, S. ;
Carla, F. ;
Pithan, H. ;
Schaefer, P. ;
Wilming, H. ;
Zykov, A. ;
Pithan, L. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (03)
[7]   3D printing in X-ray and gamma-ray imaging: A novel method for fabricating high-density imaging apertures [J].
Miller, Brian W. ;
Moore, Jared W. ;
Barrett, Harrison H. ;
Frye, Teresa ;
Adler, Steven ;
Sery, Joe ;
Furenlid, Lars R. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 659 (01) :262-268
[8]   A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications [J].
Sarrut, David ;
Bardies, Manuel ;
Boussion, Nicolas ;
Freud, Nicolas ;
Jan, Sebastien ;
Letang, Jean-Michel ;
Loudos, George ;
Maigne, Lydia ;
Marcatili, Sara ;
Mauxion, Thibault ;
Papadimitroulas, Panagiotis ;
Perrot, Yann ;
Pietrzyk, Uwe ;
Robert, Charlotte ;
Schaart, Dennis R. ;
Visvikis, Dimitris ;
Buvat, Irene .
MEDICAL PHYSICS, 2014, 41 (06)
[9]   Characterization of plastic and boron carbide additive manufactured neutron collimators [J].
Stone, M. B. ;
Siddel, D. H. ;
Elliott, A. M. ;
Anderson, D. ;
Abernathy, D. L. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2017, 88 (12)
[10]   Technical Note: Fabricating Cerrobend grids with 3D printing for spatially modulated radiation therapy: A feasibility study [J].
Zhu, Xiaofeng ;
Driewer, Joseph ;
Li, Sicong ;
Verma, Vivek ;
Lei, Yu ;
Zhang, Mutian ;
Zhang, Qinghui ;
Zheng, Dandan ;
Cullip, Timothy ;
Chang, Sha X. ;
Wang, Andrew Z. ;
Zhou, Sumin ;
Enke, Charles A. .
MEDICAL PHYSICS, 2015, 42 (11) :6269-6273