Semiparametric analysis of long-range dependence in nonlinear regression

被引:22
作者
Ivanov, A. V. [2 ]
Leonenko, N. N. [1 ]
机构
[1] Cardiff Univ, Cardiff Sch Math, Cardiff CF24 4AG, S Glam, Wales
[2] Natl Tech Univ, Kyiv Polytech Inst, UA-03056 Kiev, Ukraine
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
asymptotic inference; consistency; dependence parameter; least squares estimate (LSE); long-range dependence; non-linear regression; vector parameter; rate of convergence; semi-parametric estimate; time-domain estimate;
D O I
10.1016/j.jspi.2007.06.027
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper establishes consistency and asymptotic distribution theory for the least squares estimate of a vector parameter of non-linear regression with long-range dependent noise. A covariance-based estimate of the memory parameter is proposed. The consistency of the estimate is established. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1733 / 1753
页数:21
相关论文
共 63 条
[1]   LARGE-SAMPLE ESTIMATION FOR MEAN OF A STATIONARY RANDOM SEQUENCE [J].
ADENSTEDT, RK .
ANNALS OF STATISTICS, 1974, 2 (06) :1095-1107
[2]   A note on Rosenblatt distributions [J].
Albin, JMP .
STATISTICS & PROBABILITY LETTERS, 1998, 40 (01) :83-91
[3]  
ALJANCIC S, 1974, SERBIAN ACAD SCI AND, V462, P1
[4]   Continuous-time stochastic processes with cyclical long-range dependence [J].
Anh, VV ;
Knopova, VP ;
Leonenko, NN .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2004, 46 (02) :275-296
[5]   Models for fractional Riesz-Bessel motion and related processes [J].
Anh, VV ;
Leonenko, NN ;
McVinish, R .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2001, 9 (03) :329-346
[6]  
[Anonymous], 1988, Journal of Time Series Analysis
[7]  
[Anonymous], 1984, STAT ANAL STATIONARY
[8]   Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics [J].
Barndorff-Nielsen, OE ;
Shephard, N .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :167-207
[9]   Spectral properties of uperpositions of Ornstein-Uhlenbeck type processes [J].
Barndorff-Nielsen, OE ;
Leonenko, NN .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2005, 7 (03) :335-352
[10]   Root-n-consistent estimation in partial linear models with long-memory errors [J].
Beran, J ;
Ghosh, S .
SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (02) :345-357