Combination of rs-fMRI and sMRI Data to Discriminate Autism Spectrum Disorders in Young Children Using Deep Belief Network

被引:93
作者
Aghdam, Maryam Akhavan [1 ]
Sharifi, Arash [1 ]
Pedram, Mir Mohsen [2 ]
机构
[1] Islamic Azad Univ, Sci & Res Branch, Dept Comp Engn, Tehran, Iran
[2] Kharazmi Univ, Dept Elect & Comp Engn, Tehran, Iran
关键词
Autism spectrum disorder; rs-fMRI; sMRI; Gray matter; White matter; Deep belief network; CLASSIFICATION; SCHIZOPHRENIA; ADHD;
D O I
10.1007/s10278-018-0093-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In recent years, the use of advanced magnetic resonance (MR) imaging methods such as functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) has recorded a great increase in neuropsychiatric disorders. Deep learning is a branch of machine learning that is increasingly being used for applications of medical image analysis such as computer-aided diagnosis. In a bid to classify and represent learning tasks, this study utilized one of the most powerful deep learning algorithms (deep belief network (DBN)) for the combination of data from Autism Brain Imaging Data Exchange I and II (ABIDE I and ABIDE II) datasets. The DBN was employed so as to focus on the combination of resting-state fMRI (rs-fMRI), gray matter (GM), and white matter (WM) data. This was done based on the brain regions that were defined using the automated anatomical labeling (AAL), in order to classify autism spectrum disorders (ASDs) from typical controls (TCs). Since the diagnosis of ASD is much more effective at an early age, only 185 individuals (116 ASD and 69 TC) ranging in age from 5 to 10years were included in this analysis. In contrast, the proposed method is used to exploit the latent or abstract high-level features inside rs-fMRI and sMRI data while the old methods consider only the simple low-level features extracted from neuroimages. Moreover, combining multiple data types and increasing the depth of DBN can improve classification accuracy. In this study, the best combination comprised rs-fMRI, GM, and WM for DBN of depth 3 with 65.56% accuracy (sensitivity=84%, specificity=32.96%, F1 score=74.76%) obtained via 10-fold cross-validation. This result outperforms previously presented methods on ABIDE I dataset.
引用
收藏
页码:895 / 903
页数:9
相关论文
共 45 条
  • [1] Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions
    Akkus, Zeynettin
    Galimzianova, Alfiia
    Hoogi, Assaf
    Rubin, Daniel L.
    Erickson, Bradley J.
    [J]. JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) : 449 - 459
  • [2] Functional connectivity magnetic resonance imaging classification of autism
    Anderson, Jeffrey S.
    Nielsen, Jared A.
    Froehlich, Alyson L.
    DuBray, Molly B.
    Druzgal, T. Jason
    Cariello, Annahir N.
    Cooperrider, Jason R.
    Zielinski, Brandon A.
    Ravichandran, Caitlin
    Fletcher, P. Thomas
    Alexander, Andrew L.
    Bigler, Erin D.
    Lange, Nicholas
    Lainhart, Janet E.
    [J]. BRAIN, 2011, 134 : 3739 - 3751
  • [3] Differences in white matter reflect atypical developmental trajectory in autism: A Tract-based Spatial Statistics study
    Bakhtiari, Reyhaneh
    Zuercher, Nicole R.
    Rogier, Ophelie
    Russo, Britt
    Hippolyte, Loyse
    Granziera, Cristina
    Araabi, Babak Nadjar
    Ahmadabadi, Majid Nili
    Hadjikhani, Nouchine
    [J]. NEUROIMAGE-CLINICAL, 2012, 1 (01) : 48 - 56
  • [4] Neurodevelopmental sequelae associated with gray and white matter changes and their cellular basis: A comparison between Autism Spectrum Disorder, ADHD and dyslexia
    Bennett, M. R.
    Lagopoulos, J.
    [J]. INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE, 2015, 46 : 132 - 143
  • [5] Statistical approaches to functional neuroimaging data
    Bowman, F. DuBois
    Guo, Ying
    Derado, Gordana
    [J]. NEUROIMAGING CLINICS OF NORTH AMERICA, 2007, 17 (04) : 441 - +
  • [6] Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism
    Chen, Colleen P.
    Keown, Christopher L.
    Jahedi, Afrooz
    Nair, Aarti
    Pflieger, Mark E.
    Bailey, Barbara A.
    Mueller, Ralph-Axel
    [J]. NEUROIMAGE-CLINICAL, 2015, 8 : 238 - 245
  • [7] Structural and functional magnetic resonance imaging of autism
    Cody, H
    Pelphrey, K
    Piven, J
    [J]. INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE, 2002, 20 (3-5) : 421 - 438
  • [8] Coleman M., 2012, THE AUTISMS
  • [9] The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
    Di Martino, A.
    Yan, C-G
    Li, Q.
    Denio, E.
    Castellanos, F. X.
    Alaerts, K.
    Anderson, J. S.
    Assaf, M.
    Bookheimer, S. Y.
    Dapretto, M.
    Deen, B.
    Delmonte, S.
    Dinstein, I.
    Ertl-Wagner, B.
    Fair, D. A.
    Gallagher, L.
    Kennedy, D. P.
    Keown, C. L.
    Keysers, C.
    Lainhart, J. E.
    Lord, C.
    Luna, B.
    Menon, V.
    Minshew, N. J.
    Monk, C. S.
    Mueller, S.
    Mueller, R. A.
    Nebel, M. B.
    Nigg, J. T.
    O'Hearn, K.
    Pelphrey, K. A.
    Peltier, S. J.
    Rudie, J. D.
    Sunaert, S.
    Thioux, M.
    Tyszka, J. M.
    Uddin, L. Q.
    Verhoeven, J. S.
    Wenderoth, N.
    Wiggins, J. L.
    Mostofsky, S. H.
    Milham, M. P.
    [J]. MOLECULAR PSYCHIATRY, 2014, 19 (06) : 659 - 667
  • [10] Machine Learning for Medical Imaging1
    Erickson, Bradley J.
    Korfiatis, Panagiotis
    Akkus, Zeynettin
    Kline, Timothy L.
    [J]. RADIOGRAPHICS, 2017, 37 (02) : 505 - 515