An algorithm for approximate multiparametric linear programming

被引:33
作者
Filippi, C [1 ]
机构
[1] Univ Padua, Dept Pure & Appl Math, Padua, Italy
关键词
multiparametric programming; linear programming; approximation methods; error bounds; complexity analysis; model predictive control;
D O I
10.1023/B:JOTA.0000012733.44020.54
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Multiparametric programming considers optimization problems where the data are functions of a parameter vector and describes the optimal value and an optimizer as explicit functions of the parameters. In this paper, we consider a linear program where the right-hand side is an affine function of a parameter vector; we propose an algorithm for approximating its solution. Given a full-dimensional simplex in the parameter space and an optimizer for each simplex vertex, the algorithm formulates the linear interpolation of the given solutions as an explicit function of the parameters, giving a primal feasible approximation of an optimizer inside the simplex. If the resulting absolute error in the objective exceeds a prescribed tolerance, then the algorithm subdivides the simplex into smaller simplices where it applies recursively. We propose both a basic version and a refined version of the algorithm. The basic version is polynomial in the output size, provided a polynomial LP solver is used; the refined version may give a smaller output. A global error bound for the optimizer is derived and some computational tests are discussed.
引用
收藏
页码:73 / 95
页数:23
相关论文
共 19 条
[1]  
[Anonymous], J OPTIMIZ THEORY APP
[2]   A PIVOTING ALGORITHM FOR CONVEX HULLS AND VERTEX ENUMERATION OF ARRANGEMENTS AND POLYHEDRA [J].
AVIS, D ;
FUKUDA, K .
DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 8 (03) :295-313
[3]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[4]   Suboptimal explicit receding horizon control via approximate multiparametric quadratic programming [J].
Bemporad, A ;
Filippi, C .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 117 (01) :9-38
[5]   Convexity recognition of the union of polyhedra [J].
Bemporad, A ;
Fukuda, K ;
Torrisi, FD .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2001, 18 (03) :141-154
[6]  
Borrelli F, 2001, IEEE DECIS CONTR P, P1187, DOI 10.1109/CDC.2001.981046
[7]  
Cormen T. H., 1990, INTRO ALGORITHMS
[8]  
Fiacco A.V., 1983, INTRO SENSITIVITY ST
[9]   Multiparametric demand transportation problem [J].
Filippi, C ;
Romanin-Jacur, G .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 139 (02) :206-219
[10]   MULTIPARAMETRIC LINEAR PROGRAMMING [J].
GAL, T ;
NEDOMA, J .
MANAGEMENT SCIENCE SERIES A-THEORY, 1972, 18 (07) :406-422