A Natural Extension of the Universal Enveloping Algebra Functor to Crossed Modules of Leibniz Algebras

被引:3
作者
Fernandez-Casado, Rafael [1 ]
Garcia-Martinez, Xabier [1 ]
Ladra, Manuel [1 ]
机构
[1] Univ Santiago Compostela, Santiago De Compostela, Spain
关键词
Leibniz algebra; Associative algebra; Crossed module; Universal enveloping crossed module; Representation; COURANT ALGEBROIDS; CATEGORIES;
D O I
10.1007/s10485-016-9472-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The universal enveloping algebra functor between Leibniz and associative algebras defined by Loday and Pirashvili is extended to crossed modules. We prove that the universal enveloping crossed module of algebras of a crossed module of Leibniz algebras is its natural generalization. Then we construct an isomorphism between the category of representations of a Leibniz crossed module and the category of left modules over its universal enveloping crossed module of algebras. Our approach is particularly interesting since the actor in the category of Leibniz crossed modules does not exist in general, so the technique used in the proof for the Lie case cannot be applied. Finally we move on to the framework of the Loday-Pirashvili category in order to comprehend this universal enveloping crossed module in terms of the Lie crossed modules case.
引用
收藏
页码:1059 / 1076
页数:18
相关论文
共 32 条
[1]  
[Anonymous], 2003, Georgian Mathematical Journal
[2]  
Baez J. C., 2004, THEOR APPL CATEG, V12, P492
[3]  
Baez J.C., 2004, Theor. Appl. Categor. [electronic only], V12, P423
[4]  
Bloh A, 1965, SOV MATH DOKL, V6, P1450
[5]  
Bourn D., 2009, Cahiers de Top. et Geom. Diff. Cat., V50, P211
[6]  
Carboni A., 1992, CMS Conference Proceedings, V13, P97
[7]  
Casado R.F, 2015, THESIS
[8]   More on crossed modules in Lie, Leibniz, associative and diassociative algebras [J].
Casas, J. M. ;
Casado, R. F. ;
Khmaladze, E. ;
Ladra, M. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (06)
[9]   Adjunction between crossed modules of groups and algebras [J].
Casas, J. M. ;
Inassaridze, N. ;
Khmaladze, E. ;
Ladra, M. .
JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2014, 9 (01) :223-237
[10]   Universal Strict General Actors and Actors in Categories of Interest [J].
Casas, J. M. ;
Datuashvili, T. ;
Ladra, M. .
APPLIED CATEGORICAL STRUCTURES, 2010, 18 (01) :85-114