Maximal sets of mutually orthogonal Latin squares

被引:6
作者
Drake, DA
van Rees, GHJ
Wallis, WD
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[2] Univ Manitoba, Dept Comp Sci, Winnipeg, MB R3T 2N2, Canada
[3] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/S0012-365X(98)00119-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Maximal sets of s mutually orthogonal Latin squares of order c are constructed for infinitely many new pairs (s, v). (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:87 / 94
页数:8
相关论文
共 21 条
[1]  
ABEL RJR, 1996, CRC DISCR MATH APPL, P142
[2]  
Abel RJR., 1996, C.R.C. Handbook of Combinatorial Designs, P111
[3]  
[Anonymous], 1985, DESIGN THEORY
[4]  
BRILLHART J, 1987, CONT MATH SERIES, V22, P1983
[5]   MORE MUTUALLY ORTHOGONAL LATIN SQUARES [J].
BROUWER, AE ;
VANREES, GHJ .
DISCRETE MATHEMATICS, 1982, 39 (03) :263-281
[6]   Some direct constructions for incomplete transversal designs [J].
Colbourn, CJ .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 56 (01) :93-104
[7]  
Denes J., 1974, Latin Squares and their Applications
[8]   MAXIMAL SETS OF LATIN SQUARES AND PARTIAL TRANSVERSALS [J].
DRAKE, DA .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1977, 1 (02) :143-149
[9]  
EVANS AB, 1996, CRC DISCR MATH APPL, P386
[10]  
GE G, IN PRESS V 3 T EXIST