Elliptic systems with almost regular coefficients: Singular weight integral operators

被引:0
作者
Antontsev, S [1 ]
机构
[1] Univ Beira Interior, Dept Matemat, Covilha, Portugal
来源
FACTORIZATION, SINGULAR OPERATORS AND RELATED PROBLEMS, PROCEEDINGS | 2003年
关键词
elliptic system; generalized analytic functions; Riemann-Hilbert problems; integral operators;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the linear elliptic system of two first-order equations partial derivativezw + mu1(z)partial derivativezw + mu2(z) (partial derivative zw) over bar = A(z)w + B(z) (w) over bar + F(z), where w(z, (z) over bar) = u + iv is an unknown complex-valued function, and the related integral operators and boundary value problems. We assume that A, B, F is an element of L-p (Omega), p less than or equal to 2, in contrast to the regular Vekua's theory where p > 2. We prove that in this case the solutions of the system still preserve the properties, which correspond to the regular case with respect to: the structure of zeros, Liouville's theorem, solvability of Riemann-Hilbert boundary value problems etc.
引用
收藏
页码:25 / 41
页数:17
相关论文
共 20 条
[1]  
Antoncev S. N., 1967, SOV MATH DOKL, V8, P868
[2]  
ANTONTSEV SN, 1975, METRIC QUESTIONS THE, V7, P3
[3]  
ANTONTSEV SN, 1971, P S CONT MECH REL PR, V2, P20
[4]  
Besov O.V., 1979, INTEGRAL REPRESENTAT, VII
[5]  
Besov O.V., 1978, INTEGRAL REPRESENTAT, VI
[6]  
BLIEV N, 1997, PITMAN MONOGRAPHS SU, V86
[7]  
BOJARSKII BV, 1959, DOKL AKAD NAUK SSSR, V124, P15
[8]  
DANILUK II, 1967, T TBILIS MAT I RAZMA, V33, P32
[9]  
Gakhov F.D., 1966, Boundary Value Problems
[10]  
GEGELIA TG, 1958, SOOBSHCH AKAD NAUK G, V20, P517