Incompressible, inviscid limit of the compressible Navier-Stokes system

被引:110
作者
Masmoudi, N [1 ]
机构
[1] Univ Paris 09, CEREMADE, URA CNRS 749, F-75775 Paris 16, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2001年 / 18卷 / 02期
关键词
D O I
10.1016/S0294-1449(00)00123-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some asymptotic results concerning global (weak) solutions of compressible isentropic Navier-Stokes equations. More precisely, we establish the convergence towards solutions of incompressible Euler equations, as the density becomes constant, the Mach number goes to 0 and the Reynolds number goes to infinity. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:199 / 224
页数:26
相关论文
共 19 条
[1]   Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions [J].
Desjardins, B ;
Grenier, E ;
Lions, PL ;
Masmoudi, N .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (05) :461-471
[2]  
DESJARDINS B, LOW MACH NUMBER LIMI
[3]  
GALLAGHER I, 1999, REMARK SMOOTH SOLUTI
[4]   Oscillatory perturbations of the Navier Stokes equations [J].
Grenier, E .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (06) :477-498
[5]   All-time existence of classical solutions for slightly compressible flows [J].
Hagstrom, T ;
Lorenz, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (03) :652-672
[6]   SINGULAR LIMITS OF QUASILINEAR HYPERBOLIC SYSTEMS WITH LARGE PARAMETERS AND THE INCOMPRESSIBLE LIMIT OF COMPRESSIBLE FLUIDS [J].
KLAINERMAN, S ;
MAJDA, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :481-524
[7]   COMPRESSIBLE AND INCOMPRESSIBLE FLUIDS [J].
KLAINERMAN, S ;
MAJDA, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (05) :629-651
[8]   CONVERGENCE OF THE SOLUTIONS OF THE COMPRESSIBLE TO THE SOLUTIONS OF THE INCOMPRESSIBLE NAVIER - STOKES EQUATIONS [J].
KREISS, HO ;
LORENZ, J ;
NAUGHTON, MJ .
ADVANCES IN APPLIED MATHEMATICS, 1991, 12 (02) :187-214
[9]   ON THE INCOMPRESSIBLE LIMIT OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
LIN, CK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (3-4) :677-707
[10]  
Lions P.-L., 1996, Mathematical Topics in Fluid Dynamics, Vol. 1, Incompressible Models, V1