NUMERICAL METHODS PRESERVING MULTIPLE HAMILTONIANS FOR STOCHASTIC POISSON SYSTEMS

被引:4
|
作者
Wang, Lijin [1 ]
Wang, Pengjun [1 ]
Cao, Yanzhao [2 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[2] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2022年 / 15卷 / 04期
关键词
Stochastic Poisson systems; invariants; discrete gradients; root mean-square convergence order; Hamiltonians-preserving methods; Casimir functions; DIFFERENTIAL-EQUATIONS; INTEGRATORS;
D O I
10.3934/dcdss.2021095
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a class of numerical schemes for stochastic Poisson systems with multiple invariant Hamiltonians. The method is based on the average vector field discrete gradient and an orthogonal projection technique. The proposed schemes preserve all the invariant Hamiltonians of the stochastic Poisson systems simultaneously, with possibility of achieving high convergence orders in the meantime. We also prove that our numerical schemes preserve the Casimir functions of the systems under certain conditions. Numerical experiments verify the theoretical results and illustrate the effectiveness of our schemes.
引用
收藏
页码:819 / 836
页数:18
相关论文
共 50 条
  • [1] Structure-Preserving Numerical Methods for Stochastic Poisson Systems
    Hong, Jialin
    Ruan, Jialin
    Sun, Liying
    Wang, Lijin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 29 (03) : 802 - 830
  • [2] STRUCTURE-PRESERVING NUMERICAL METHODS FOR A CLASS OF STOCHASTIC POISSON SYSTEMS
    Wang, Yuchao
    Wang, Lijin
    Cao, Yanzhao
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (2-3) : 194 - 219
  • [3] Drift-preserving numerical integrators for stochastic Poisson systems
    Cohen, David
    Vilmart, Gilles
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (01) : 4 - 20
  • [4] Numerical methods for stochastic systems preserving symplectic structure
    Milstein, GN
    Repin, YM
    Tretyakov, MV
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (04) : 1583 - 1604
  • [5] High-Order Energy-Preserving Methods for Stochastic Poisson Systems
    Li, Xiuyan
    Ma, Qiang
    Ding, Xiaohua
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 9 (03) : 465 - 484
  • [6] ENERGY-PRESERVING INTEGRATORS FOR STOCHASTIC POISSON SYSTEMS
    Cohen, David
    Dujardin, Guillaume
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2014, 12 (08) : 1523 - 1539
  • [7] Recent Advances on Preserving Methods for Poisson Systems
    Brugnano, L.
    Calvo, M.
    Montijano, J. I.
    Randez, L.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [8] Energy-preserving methods for Poisson systems
    Brugnano, L.
    Calvo, M.
    Montijano, J. I.
    Randez, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (16) : 3890 - 3904
  • [9] STRUCTURE-PRESERVING REDUCED BASIS METHODS FOR POISSON SYSTEMS
    Hesthaven, Jan S.
    Pagliantini, Cecilia
    MATHEMATICS OF COMPUTATION, 2021, 90 (330) : 1701 - 1740
  • [10] LIE-POISSON NUMERICAL METHOD FOR A CLASS OF STOCHASTIC LIE-POISSON SYSTEMS
    Liu, Qianqian
    Wang, Lijin
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (01) : 104 - 119