Semantic segmentation of multimodal point clouds from the railway context

被引:2
作者
Dibari, P. [1 ]
Nitti, M. [1 ]
Maglietta, R. [1 ]
Castellano, G. [2 ]
Dimauro, G. [2 ]
Reno, V [1 ]
机构
[1] Natl Res Council Italy, Inst Intelligent Ind Technol & Syst Adv Mfg, Bari, Italy
[2] Univ Bari, Dept Comp Sci, Bari, Italy
来源
MULTIMODAL SENSING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS II | 2021年 / 11785卷
关键词
Deep learning; Point cloud; Semantic segmentation; Computer vision; PointNet; Railway;
D O I
10.1117/12.2593839
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study we analyzed deep learning methods for point clouds semantic segmentation. We compared PointNet and PointNet++ on data with different characteristics, coming from distinct domains, in order to understand their behavior. Finally, we exploited the so gained knowledge to improve the performance of the models on railway data. In particular, we properly updated the training protocol and altered the PointNet++ architecture, in order to perform transfer learning by leveraging the models previously trained in the first experiments. Results on both state-of-the-art datasets and on a custom dataset specifically acquired for this scope demonstrate that transfer learning can effectively boost the performance of the models in terms of prediction accuracy and convergence rate in the railway context.
引用
收藏
页数:9
相关论文
共 12 条
[1]  
[Anonymous], 2016, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2016.170
[2]  
Dimauro G, 2014, INT CONF IMAG PROC, P427
[3]  
Dimauro Giovanni, 2012, 2012 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS), P69
[4]   Deep Learning for 3D Point Clouds: A Survey [J].
Guo, Yulan ;
Wang, Hanyun ;
Hu, Qingyong ;
Liu, Hao ;
Liu, Li ;
Bennamoun, Mohammed .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) :4338-4364
[5]   Convolutional Neural Networks for Risso's Dolphins identification [J].
Maglietta, Rosalia ;
Reno, Vito ;
Caccioppoli, Rocco ;
Seller, Emanuele ;
Bellomo, Stefano ;
Santacesaria, Francesca Cornelia ;
Colella, Roberto ;
Cipriano, Giulia ;
Stella, Ettore ;
Hartman, Karin ;
Fanizza, Carmelo ;
Dimauro, Giovanni ;
Carlucci, Roberto .
IEEE ACCESS, 2020, 8 :80195-80206
[6]   A Compact 3D Omnidirectional Range Sensor of High Resolution for Robust Reconstruction of Environments [J].
Marani, Roberto ;
Reno, Vito ;
Nitti, Massimiliano ;
D'Orazio, Tiziana ;
Stella, Ettore .
SENSORS, 2015, 15 (02) :2283-2308
[7]   A Vision-Based Odometer for Localization of Omnidirectional Indoor Robots [J].
Patruno, Cosimo ;
Colella, Roberto ;
Nitti, Massimiliano ;
Reno, Vito ;
Mosca, Nicola ;
Stella, Ettore .
SENSORS, 2020, 20 (03)
[8]  
Qi C. R., 2017, P 31 INT C NEUR INF, P5099
[9]   PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation [J].
Qi, Charles R. ;
Su, Hao ;
Mo, Kaichun ;
Guibas, Leonidas J. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :77-85
[10]   Combined Color Semantics and Deep Learning for the Automatic Detection of Dolphin Dorsal Fins [J].
Reno, Vito ;
Losapio, Gianvito ;
Forenza, Flavio ;
Politi, Tiziano ;
Stella, Ettore ;
Fanizza, Carmelo ;
Hartman, Karin ;
Carlucci, Roberto ;
Dimauro, Giovanni ;
Maglietta, Rosalia .
ELECTRONICS, 2020, 9 (05)