On the set of associated primes of a local cohomology module

被引:48
作者
Hellus, M [1 ]
机构
[1] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
关键词
D O I
10.1006/jabr.2000.8580
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume R is a local Cohen-Macaulay ring. It is shown that Ass(R)(H-I(l)(R)) is finite for any ideal I and any integer I provided Ass(R)(H-(x, y)(2)(R)) is finite for any x, y is an element of R and Ass(R)(H-(x1,x2,y)(3)(R)) is finite for any y is an element of R and any regular sequence x,, x(2) is an element of R. Furthermore it is shown that Ass,(H-I(l)(R)) is always finite if dim(R) less than or equal to 3. The same statement is even true for dim(R) less than or equal to 4 if R is almost factorial. (C) 2001 Academic Press.
引用
收藏
页码:406 / 419
页数:14
相关论文
共 12 条
[1]  
BRODMANN MP, 1998, FINITENESS RESULT AS
[2]  
FOSSUM R, 1973, DIVISOR CLASS GROUP
[3]  
GROTHENDIECK A, 1968, SG A, V2
[4]   AFFINE DUALITY AND COFINITENESS [J].
HARTSHORNE, R .
INVENTIONES MATHEMATICAE, 1970, 9 (02) :145-+
[5]   COFINITENESS AND VANISHING OF LOCAL COHOMOLOGY MODULES [J].
HUNEKE, C ;
KOH, J .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1991, 110 :421-429
[6]  
HUNEKE C, 1992, RES NOTES MATH, V2
[7]  
HUNEKE CL, 1993, T AM MATH SOC, V339
[8]  
LYUBEZNIK G, F MODULES APPL LOCAL
[9]  
LYUBEZNIK G, 1993, INVENT MATH, V113
[10]  
MATSUMURA H, 1986, COMMUTATIVE RING THE