Hysteresis and synchronization processes of Kuramoto oscillators on high-dimensional simplicial complexes with competing simplex-encoded couplings

被引:26
作者
Chutani, Malayaja [1 ]
Tadic, Bosiljka [2 ,3 ]
Gupte, Neelima [1 ,4 ]
机构
[1] Indian Inst Technol Madras, Dept Phys, Chennai 600036, Tamil Nadu, India
[2] Jozef Stefan Inst, Dept Theoret Phys, Ljubljana, Slovenia
[3] Complex Sci Hub Vienna, Vienna, Austria
[4] Indian Inst Technol Madras, Complex Syst & Dynam Grp, Chennai 600036, Tamil Nadu, India
关键词
NETWORKS; HYPERBOLICITY;
D O I
10.1103/PhysRevE.104.034206
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent studies of dynamic properties in complex systems point out the profound impact of hidden geometry features known as simplicial complexes, which enable geometrically conditioned many-body interactions. Studies of collective behaviors on the controlled-structure complexes can reveal the subtle interplay of geometry and dynamics. Here we investigate the phase synchronization (Kuramoto) dynamics under the competing interactions embedded on 1-simplex (edges) and 2-simplex (triangles) faces of a homogeneous four-dimensional simplicial complex. Its underlying network is a 1-hyperbolic graph with the assortative correlations among the node's degrees and the spectral dimension that exceeds ds = 4. By numerically solving the set of coupled equations for the phase oscillators associated with the network nodes, we determine the time-averaged system's order parameter to characterize the synchronization level. Our results reveal a variety of synchronization and desynchronization scenarios, including partially synchronized states and nonsymmetrical hysteresis loops, depending on the sign and strength of the pairwise interactions and the geometric frustrations promoted by couplings on triangle faces. For substantial triangle-based interactions, the frustration effects prevail, preventing the complete synchronization and the abrupt desynchronization transition disappears. These findings shed new light on the mechanisms by which the high-dimensional simplicial complexes in natural systems, such as human connectomes, can modulate their native synchronization processes.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Evolutionary dynamics of higher-order interactions in social networks [J].
Alvarez-Rodriguez, Unai ;
Battiston, Federico ;
de Arruda, Guilherme Ferraz ;
Moreno, Yamir ;
Perc, Matjaz ;
Latora, Vito .
NATURE HUMAN BEHAVIOUR, 2021, 5 (05) :586-595
[2]   The topology of higher-order complexes associated with brain hubs in human connectomes [J].
Andjelkovic, Miroslav ;
Tadic, Bosiljka ;
Melnik, Roderick .
SCIENTIFIC REPORTS, 2020, 10 (01)
[3]   Topology of Innovation Spaces in the Knowledge Networks Emerging through Questions-And-Answers [J].
Andjelkovic, Miroslav ;
Tadic, Bosiljka ;
Dankulov, Marija Mitrovic ;
Rajkovic, Milan ;
Melnik, Roderick .
PLOS ONE, 2016, 11 (05)
[4]   Hidden geometry of traffic jamming [J].
Andjelkovic, Miroslav ;
Gupte, Neelima ;
Tadic, Bosiljka .
PHYSICAL REVIEW E, 2015, 91 (05)
[5]   Modeling the Spatiotemporal Epidemic Spreading of COVID-19 and the Impact of Mobility and Social Distancing Interventions [J].
Arenas, Alex ;
Cota, Wesley ;
Gomez-Gardenes, Jesus ;
Gomez, Sergio ;
Granell, Clara ;
Matamalas, Joan T. ;
Soriano-Panos, David ;
Steinegger, Benjamin .
PHYSICAL REVIEW X, 2020, 10 (04)
[6]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[7]   Networks beyond pairwise interactions: Structure and dynamics [J].
Battiston, Federico ;
Cencetti, Giulia ;
Iacopini, Iacopo ;
Latora, Vito ;
Lucas, Maxime ;
Patania, Alice ;
Young, Jean-Gabriel ;
Petri, Giovanni .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2020, 874 :1-92
[8]  
Beaumont J. R., 1982, CONCEPTS TECHNIQUES, V34
[9]   Small values of the hyperbolicity constant in graphs [J].
Bermudo, Sergio ;
Rodriguez, Jose M. ;
Rosario, Omar ;
Sigarreta, Jose M. .
DISCRETE MATHEMATICS, 2016, 339 (12) :3073-3084
[10]   Gromov hyperbolic graphs [J].
Bermudo, Sergio ;
Rodriguez, Jose M. ;
Sigarreta, Jose M. ;
Vilaire, Jean-Marie .
DISCRETE MATHEMATICS, 2013, 313 (15) :1575-1585