Coupled effect of temperature and impact loading on tensile strength of ultra-high performance fibre reinforced concrete

被引:43
|
作者
Liang, Xiangwei [1 ]
Wu, Chengqing [1 ,3 ]
Yang, Yekai [2 ]
Wu, Cheng [3 ]
Li, Zhongxian [3 ]
机构
[1] Univ Technol Sydney, Ctr Built Infrastruct Res, Sch Civil & Environm Engn, Sydney, NSW 2007, Australia
[2] Tianjin Univ, Tianjin 300072, Peoples R China
[3] Tianjin Chengjian Univ, Tianjin Key Lab Civil Struct Protect & Reinforcem, Tianjin, Peoples R China
基金
澳大利亚研究理事会;
关键词
Ultra-high performance concrete; Dynamic loading; Elevated temperature; Splitting tensile strength; MECHANICAL-PROPERTIES; ELEVATED-TEMPERATURE; FIRE RESISTANCE; THERMAL STRAIN; BEHAVIOR;
D O I
10.1016/j.compstruct.2019.111432
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This study focused on coupled effect of temperature and impact loading on tensile strength of an ultra-high performance fibre reinforced concrete (UHPFRC), which retains 69% of its original compressive strength after exposure to 1000 degrees C. The relationship between tensile strength and compressive strength was investigated under the coupled action since temperature may have different effects on them. Static tests and dynamic tests using a self-designed Split Hopkinson Pressure Bar (SHPB) system were conducted at temperatures 20, 200, 400, 600 and 800 degrees C. Comparison was made between tensile strength and compressive strength of UHPFRC obtained in hot state and cooled-down state. It was found splitting tensile strength fell sharply beyond 400 degrees C but still retained 41% of its original strength at 800 degrees C, well above other concretes. Temperature and combined action of elevated temperature and impact loading have different effects on splitting tensile strength and compressive strength.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Experimental study on ultra-high performance concrete with high fire resistance under simultaneous effect of elevated temperature and impact loading
    Liang, Xiangwei
    Wu, Chengqing
    Yang, Yekai
    Li, Zhongxian
    CEMENT & CONCRETE COMPOSITES, 2019, 98 : 29 - 38
  • [2] Performance Evaluation of Ultra-high Performance Concrete (UHPC) and Ultra-high Performance Fibre Reinforced Concrete (UHPFRC) in Pavement Applications
    Rambabu, Dadi
    Sharma, Shashi Kant
    Akbar, M. Abdul
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (10) : 13685 - 13707
  • [3] Characteristics of 3D-printing ultra-high performance fibre-reinforced concrete under impact loading
    Yang, Yekai
    Wu, Chengqing
    Liu, Zhongxina
    Li, Jun
    Yang, Ting
    Jiang, Xiquan
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2022, 164
  • [4] Fire damaged ultra-high performance concrete (UHPC) under coupled axial static and impact loading
    Liu, Kai
    Wu, Chengqing
    Li, Xibing
    Tao, Ming
    Li, Jun
    Liu, Jian
    Xu, Shenchun
    CEMENT & CONCRETE COMPOSITES, 2022, 126
  • [5] Effect of polymer fibers on pore pressure development and explosive spalling of ultra-high performance concrete at elevated temperature
    Zhang, Dong
    Chen, Baochun
    Wu, Xiangguo
    Weng, Yiwei
    Li, Ye
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2022, 22 (04)
  • [6] Development of ultra-high performance concrete with high fire resistance
    Liang, Xiangwei
    Wu, Chengqing
    Su, Yu
    Chen, Zhu
    Li, Zhongxian
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 179 : 400 - 412
  • [7] Effect of temperature on mechanical properties of ultra-high performance concrete
    Banerji, Srishti
    Kodur, Venkatesh
    FIRE AND MATERIALS, 2022, 46 (01) : 287 - 301
  • [8] Behavior of Reinforced Ultra-High Performance Concrete Slabs Under Impact Loading After Exposure to Elevated Temperatures
    Chi, Kaiyi
    Li, Jun
    Wu, Chengqing
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (08)
  • [9] Experimental investigation of triaxial strength of ultra-high performance concrete after exposure to elevated temperature
    Xu, Zhenhuan
    Li, Jun
    Wu, Pengtao
    Wu, Chengqing
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 295
  • [10] Effect of hybrid steel, polypropylene, polyvinyl alcohol, and jute fibers on the properties of ultra-high performance fiber reinforced concrete exposed to elevated temperature
    Ali, Manar
    Elsayed, Mahmoud
    Tayeh, Bassam A.
    Maglad, Ahmed M.
    Abd El-Azim, Ahmed
    STRUCTURAL CONCRETE, 2024, 25 (01) : 492 - 505