Genomic and transcriptomic approaches to study immunology in cyprinids: What is next?

被引:23
作者
Petit, Jules [1 ]
David, Lior [2 ]
Dirks, Ron [3 ]
Wiegertjes, Geert F. [1 ]
机构
[1] Wageningen Univ, Cell Biol & Immunol Grp, Wageningen Inst Anim Sci, POB 338, NL-6700 AH Wageningen, Netherlands
[2] Hebrew Univ Jerusalem, Dept Anim Sci, RH Smith Fac Agr Food & Environm, IL-76100 Rehovot, Israel
[3] ZF Screens BV, JH, Oortweg 19, NL-2333 CH Leiden, Netherlands
基金
巴西圣保罗研究基金会;
关键词
NGS; Immunity; Carp; Cyprinidae; Whole genome duplication; Polyploidy; CARP CTENOPHARYNGODON-IDELLUS; EPC CELL-LINE; COMMON CARP; PROVIDES INSIGHTS; GENE-EXPRESSION; RNA-SEQ; ANALYSIS REVEALS; LYMPHOID-TISSUE; DRAFT GENOME; ROUNDS;
D O I
10.1016/j.dci.2017.02.022
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Accelerated by the introduction of Next-Generation Sequencing (NGS), a number of genomes of cyprinid fish species have been drafted, leading to a highly valuable collective resource of comparative genome information on cyprinids (Cyprinidae). In addition, NGS-based transcriptome analyses of different developmental stages, organs, or cell types, increasingly contribute to the understanding of complex physiological processes, including immune responses. Cyprinids are a highly interesting family because they comprise one of the most-diversified families of teleosts and because of their variation in ploidy level, with diploid, triploid, tetraploid, hexaploid and sometimes even octoploid species. The wealth of data obtained from NGS technologies provides both challenges and opportunities for immunological research, which will be discussed here. Correct interpretation of ploidy effects on immune responses requires knowledge of the degree of functional divergence between duplicated genes, which can differ even between closely-related cyprinid fish species. We summarize NGS-based progress in analysing immune responses and discuss the importance of respecting the presence of (multiple) duplicated gene sequences when performing transcriptome analyses for detailed understanding of complex physiological processes. Progressively, advances in NGS technology are providing workable methods to further elucidate the implications of gene duplication events and functional divergence of duplicates genes and proteins involved in immune responses in cyprinids. We conclude with discussing how future applications of NGS technologies and analysis methods could enhance immunological research and understanding. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:48 / 62
页数:15
相关论文
共 134 条
[1]   Zebrafish hox clusters and vertebrate genome evolution [J].
Amores, A ;
Force, A ;
Yan, YL ;
Joly, L ;
Amemiya, C ;
Fritz, A ;
Ho, RK ;
Langeland, J ;
Prince, V ;
Wang, YL ;
Westerfield, M ;
Ekker, M ;
Postlethwait, JH .
SCIENCE, 1998, 282 (5394) :1711-1714
[2]   Genome Evolution and Meiotic Maps by Massively Parallel DNA Sequencing: Spotted Gar, an Outgroup for the Teleost Genome Duplication [J].
Amores, Angel ;
Catchen, Julian ;
Ferrara, Allyse ;
Fontenot, Quenton ;
Postlethwait, John H. .
GENETICS, 2011, 188 (04) :799-U79
[3]  
[Anonymous], 1977, Immunogenetics
[4]   Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes [J].
Aparicio, S ;
Chapman, J ;
Stupka, E ;
Putnam, N ;
Chia, J ;
Dehal, P ;
Christoffels, A ;
Rash, S ;
Hoon, S ;
Smit, A ;
Gelpke, MDS ;
Roach, J ;
Oh, T ;
Ho, IY ;
Wong, M ;
Detter, C ;
Verhoef, F ;
Predki, P ;
Tay, A ;
Lucas, S ;
Richardson, P ;
Smith, SF ;
Clark, MS ;
Edwards, YJK ;
Doggett, N ;
Zharkikh, A ;
Tavtigian, SV ;
Pruss, D ;
Barnstead, M ;
Evans, C ;
Baden, H ;
Powell, J ;
Glusman, G ;
Rowen, L ;
Hood, L ;
Tan, YH ;
Elgar, G ;
Hawkins, T ;
Venkatesh, B ;
Rokhsar, D ;
Brenner, S .
SCIENCE, 2002, 297 (5585) :1301-1310
[5]  
Baird N.A., 2008, Plos One, P3
[6]   Carrier Testing for Severe Childhood Recessive Diseases by Next-Generation Sequencing [J].
Bell, Callum J. ;
Dinwiddie, Darrell L. ;
Miller, Neil A. ;
Hateley, Shannon L. ;
Ganusova, Elena E. ;
Mudge, Joann ;
Langley, Ray J. ;
Zhang, Lu ;
Lee, Clarence C. ;
Schilkey, Faye D. ;
Sheth, Vrunda ;
Woodward, Jimmy E. ;
Peckham, Heather E. ;
Schroth, Gary P. ;
Kim, Ryan W. ;
Kingsmore, Stephen F. .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (65)
[7]   Transcriptomic Approaches in the Zebrafish Model for Tuberculosis-Insights Into Host- and Pathogen-specific Determinants of the Innate Immune Response [J].
Benard, E. L. ;
Rougeot, J. ;
Racz, P. I. ;
Spaink, H. P. ;
Meijer, A. H. .
GENETICS, GENOMICS AND PHENOMICS OF FISH, 2016, 95 :217-251
[8]   The fishes of Genome 10K [J].
Bernardi, Giacomo ;
Wiley, Edward O. ;
Mansour, Hicham ;
Miller, Michael R. ;
Orti, Guillermo ;
Haussler, David ;
O'Brien, Stephen J. ;
Ryder, Oliver A. ;
Venkatesh, Byrappa .
MARINE GENOMICS, 2012, 7 :3-6
[9]   The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates [J].
Berthelot, Camille ;
Brunet, Frederic ;
Chalopin, Domitille ;
Juanchich, Amelie ;
Bernard, Maria ;
Noel, Benjamin ;
Bento, Pascal ;
Da Silva, Corinne ;
Labadie, Karine ;
Alberti, Adriana ;
Aury, Jean-Marc ;
Louis, Alexandra ;
Dehais, Patrice ;
Bardou, Philippe ;
Montfort, Jerome ;
Klopp, Christophe ;
Cabau, Cedric ;
Gaspin, Christine ;
Thorgaard, Gary H. ;
Boussaha, Mekki ;
Quillet, Edwige ;
Guyomard, Rene ;
Galiana, Delphine ;
Bobe, Julien ;
Volff, Jean-Nicolas ;
Genet, Carine ;
Wincker, Patrick ;
Jaillon, Olivier ;
Roest Crollius, Hugues ;
Guiguen, Yann .
NATURE COMMUNICATIONS, 2014, 5
[10]   Genetics and immunity in the era of single-cell genomics [J].
Braga, Felipe A. Vieira ;
Teichmann, Sarah A. ;
Chen, Xi .
HUMAN MOLECULAR GENETICS, 2016, 25 (R2) :R141-R148