Flip posets of Bruhat intervals

被引:0
|
作者
Blanco, Saul A. [1 ]
机构
[1] Indiana Univ, Dept Comp Sci, Bloomington, IN 47408 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2018年 / 25卷 / 04期
关键词
CD-INDEX;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce a way of partitioning the paths of shortest lengths in the Bruhat graph B(u, v) of a Bruhat interval [u, v] into rank posets P-i in a way that each P-i has a unique maximal chain that is rising under a reflection order. In the case where each P-i has rank three, the construction yields a combinatorial description of some terms of the complete cd-index as a sum of ordinary cd-indices of Eulerian posets obtained from each of the P-i.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Descent systems for Bruhat posets
    Lex E. Renner
    Journal of Algebraic Combinatorics, 2009, 29 : 413 - 435
  • [2] Descent systems for Bruhat posets
    Renner, Lex E.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2009, 29 (04) : 413 - 435
  • [3] Bruhat order on plane posets and applications
    Foissy, Loic
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 126 : 1 - 23
  • [4] On the shape of Bruhat intervals
    Bjorner, Anders
    Ekedahl, Torsten
    ANNALS OF MATHEMATICS, 2009, 170 (02) : 799 - 817
  • [5] From the weak Bruhat order to crystal posets
    Patricia Hersh
    Cristian Lenart
    Mathematische Zeitschrift, 2017, 286 : 1435 - 1464
  • [6] From the weak Bruhat order to crystal posets
    Hersh, Patricia
    Lenart, Cristian
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (3-4) : 1435 - 1464
  • [7] Inversion arrangements and Bruhat intervals
    Hultman, Axel
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (07) : 1897 - 1906
  • [8] An abstract model for Bruhat intervals
    Du Cloux, F
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (02) : 197 - 222
  • [9] Intervals and factors in the Bruhat order
    Tenner, Bridget Eileen
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01): : 383 - 396
  • [10] Intervals and factors in the Bruhat order
    Department of Mathematical Sciences, DePaul University, United States
    Discrete Math. Theor. Comput. Sci., 1 (383-396):