A PURE JUMP MARKOV PROCESS WITH A RANDOM SINGULARITY SPECTRUM

被引:17
作者
Barral, Julien [1 ]
Fournier, Nicolas [2 ]
Jaffard, Stephane [2 ]
Seuret, Stephane [2 ]
机构
[1] Univ Paris 13, Inst Galilee, F-93430 Villetaneuse, France
[2] Univ Paris Est Creteil Val de Marne, UFR Sci & Technol, CNRS, Lab Anal & Math Appl,UMR 8050, F-94010 Creteil, France
关键词
Singularity spectrum; Hausdorff dimension; Markov processes; jump processes; stochastic differential equations; Poisson measures; MULTIFRACTAL NATURE; HAUSDORFF DIMENSION; WAVELET SERIES; LEVY PROCESSES;
D O I
10.1214/10-AOP533
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct a nondecreasing pure jump Markov process, whose jump measure heavily depends on the values taken by the process. We determine the singularity spectrum of this process, which turns out to be random and to depend locally on the values taken by the process. The result relies on fine properties of the distribution of Poisson point processes and on ubiquity theorems.
引用
收藏
页码:1924 / 1946
页数:23
相关论文
共 22 条
[1]  
[Anonymous], 1985, TURBULENCE PREDICTAB
[2]  
Ayache A, 2007, REV MAT IBEROAM, V23, P327
[3]   Continuity of the multifractal spectrum of a random statistically self-similar measure [J].
Barral, J .
JOURNAL OF THEORETICAL PROBABILITY, 2000, 13 (04) :1027-1060
[4]  
BARRAL J, 2008, ARXIV09032215V1
[5]  
Barral J., 2004, P S PURE MATH
[6]   The multifractal nature of heterogeneous sums of Dirac masses [J].
Barral, Julien ;
Seuret, Stephane .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 144 :707-727
[7]   Heterogeneous ubiquitous systems in Rd and Hausdorff dimension [J].
Barral, Julien ;
Seuret, Stephane .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2007, 38 (03) :467-515
[8]   The singularity spectrum of Levy processes in multifractal time [J].
Barral, Julien ;
Seuret, Stephane .
ADVANCES IN MATHEMATICS, 2007, 214 (01) :437-468
[9]  
Bertoin J., 1994, STOCHASTICS STOCHAST, V50, P205
[10]   ON THE MULTIFRACTAL ANALYSIS OF MEASURES [J].
BROWN, G ;
MICHON, G ;
PEYRIERE, J .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) :775-790