Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors

被引:245
作者
Zhi, Mingjia [1 ]
Manivannan, Ayyakkannu [2 ]
Meng, Fanke [1 ]
Wu, Nianqiang [1 ]
机构
[1] W Virginia Univ, Dept Mech & Aerosp Engn, WVNano Initiat, Morgantown, WV 26506 USA
[2] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA
关键词
Supercapacitor; Electrospinning; MnO2; Impedance; Carbon nanofibers; ELECTROLESS DEPOSITION; PERFORMANCE; STORAGE; MNO2; NANOSTRUCTURES; CAPACITOR; ARRAYS; OXIDE;
D O I
10.1016/j.jpowsour.2012.02.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents highly conductive carbon nanofiber/MnO2 coaxial cables in which individual electrospun carbon nanofibers are coated with an ultrathin hierarchical MnO2 layer. In the hierarchical MnO2 structure, an around 4 nm thick sheath surrounds the carbon nanofiber (CNF) in a diameter of 200 nm, and nano-whiskers grow radically outward from the sheath in view of the cross-section of the coaxial cables, giving a high specific surface area of MnO2. The CNFs are synthesized by electrospinning a precursor containing iron acetylacetonate (AAI). The addition of AAI not only enlarges the specific surface area of the CNF but also greatly enhances their electronic conductivity, which leads to a dramatic improvement in the specific capacitance and the rate capability of the CNF/MnO2 electrode. The AAI-CNF/MnO2 electrode shows a specific capacitance of 311 Fg(-1) for the whole electrode and 900 Fg(-1) for the MnO2 shell at a scan rate of 2 mV s(-1). Good cycling stability, high energy density (80.2 Wh kg(-1)) and high power density (57.7 kW kg(-1)) are achieved. This work indicates that high electronic conductivity of the electrode material is crucial to achieving high power and energy density for pseudo-supercapacitors. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:345 / 353
页数:9
相关论文
共 35 条
[1]   Flexible Zn2SnO4/MnO2 Core/Shell Nanocable-Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes [J].
Bao, Lihong ;
Zang, Jianfeng ;
Li, Xiaodong .
NANO LETTERS, 2011, 11 (03) :1215-1220
[2]   High-Performance Nanostructured Supercapacitors on a Sponge [J].
Chen, Wei ;
Rakhi, R. B. ;
Hu, Liangbing ;
Xie, Xing ;
Cui, Yi ;
Alshareef, H. N. .
NANO LETTERS, 2011, 11 (12) :5165-5172
[3]   Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes [J].
Chen, Wei ;
Fan, Zhongli ;
Gu, Lin ;
Bao, Xinhe ;
Wang, Chunlei .
CHEMICAL COMMUNICATIONS, 2010, 46 (22) :3905-3907
[4]   Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition:: Implications for electrochemical capacitors [J].
Fischer, Anne E. ;
Pettigrew, Katherine A. ;
Rolison, Debra R. ;
Stroud, Rhonda M. ;
Long, Jeffrey W. .
NANO LETTERS, 2007, 7 (02) :281-286
[5]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[6]   High Pseudocapacitance from Ultrathin V2O5 Films Electrodeposited on Self-Standing Carbon-Nanofiber Paper [J].
Ghosh, Arunabha ;
Ra, Eun Ju ;
Jin, Meihua ;
Jeong, Hae-Kyung ;
Kim, Tae Hyung ;
Biswas, Chandan ;
Lee, Young Hee .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (13) :2541-2547
[7]   Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance [J].
Honda, Yuichi ;
Haramoto, Tetsuhisa ;
Takeshige, Masayuki ;
Shiozaki, Hideki ;
Kitamura, Takaharu ;
Ishikawa, Masashi .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (04) :A106-A110
[8]   Symmetrical MnO2-Carbon Nanotube-Textile Nanostructures for Wearable Pseudocapacitors with High Mass Loading [J].
Hu, Liangbing ;
Chen, Wei ;
Xie, Xing ;
Liu, Nian ;
Yang, Yuan ;
Wu, Hui ;
Yao, Yan ;
Pasta, Mauro ;
Alshareef, Husam N. ;
Cui, Yi .
ACS NANO, 2011, 5 (11) :8904-8913
[9]  
Jayalakshmi M, 2008, INT J ELECTROCHEM SC, V3, P1196
[10]   Ultrafine manganese dioxide nanowire network for high-performance supercapacitors [J].
Jiang, Hao ;
Zhao, Ting ;
Ma, Jan ;
Yan, Chaoyi ;
Li, Chunzhong .
CHEMICAL COMMUNICATIONS, 2011, 47 (04) :1264-1266