The SC1 property of the squared norm of the SOC Fischer-Burmeister function

被引:21
作者
Chen, Jein-Shan [1 ]
Sun, Defeng [2 ]
Sun, Jie [3 ]
机构
[1] Natl Taiwan Normal Univ, Dept Math, Taipei 11677, Taiwan
[2] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[3] Natl Univ Singapore, Dept Decis Sci, Singapore 117592, Singapore
关键词
second-order cone; merit function; spectral factorization; lipschitz continuity; semismoothness;
D O I
10.1016/j.orl.2007.08.005
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We show that the gradient mapping of the squared norm of Fischer-Burmeister function is globally Lipschitz continuous and semismooth, which provides a theoretical basis for solving nonlinear second-order cone complementarity problems via the conjugate gradient method and the semismooth Newton's method. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:385 / 392
页数:8
相关论文
共 11 条
[1]   An unconstrained smooth minimization reformulation of the second-order cone complementarity problem [J].
Chen, JS ;
Tseng, P .
MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) :293-327
[2]   Analysis of nonsmooth vector-valued functions associated with second-order cones [J].
Chen, JS ;
Chen, X ;
Tseng, P .
MATHEMATICAL PROGRAMMING, 2004, 101 (01) :95-117
[3]   Complementarity functions and numerical experiments on some smoothing newton methods for second-order-cone complementarity problems [J].
Chen, XD ;
Sun, D ;
Sun, J .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2003, 25 (1-3) :39-56
[4]  
Fukushima M, 2001, SIAM J OPTIMIZ, V12, P436
[5]  
Koecher M, 1999, Lecture Notes in Math., V1710
[6]   MONOTONE-FUNCTIONS ON FORMALLY REAL JORDAN ALGEBRAS [J].
KORANYI, A .
MATHEMATISCHE ANNALEN, 1984, 269 (01) :73-76
[7]  
ORTEGA JM, 2000, SIAM CLASSICS APPL M
[8]   A NONSMOOTH VERSION OF NEWTON METHOD [J].
QI, L ;
SUN, J .
MATHEMATICAL PROGRAMMING, 1993, 58 (03) :353-367
[9]   A note on the Lipschitz continuity of the gradient of the squared norm of the matrix-valued Fischer-Burmeister function [J].
Sim, CK ;
Sun, J ;
Ralph, D .
MATHEMATICAL PROGRAMMING, 2006, 107 (03) :547-553
[10]   Strong semismoothness of the fischer-burmeister SDC and SOC complementarity functions [J].
Sun, DF ;
Sun, J .
MATHEMATICAL PROGRAMMING, 2005, 103 (03) :575-581