Artificial intelligence foundation for therapeutic science

被引:72
作者
Huang, Kexin [1 ,6 ]
Fu, Tianfan [2 ]
Gao, Wenhao [3 ]
Zhao, Yue [4 ]
Roohani, Yusuf [5 ]
Leskovec, Jure [6 ]
Coley, Connor W. [3 ]
Xiao, Cao [7 ]
Sun, Jimeng [8 ]
Zitnik, Marinka [9 ,10 ,11 ]
机构
[1] Harvard Univ, Hlth Data Sci Program, Boston, MA 02115 USA
[2] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
[3] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[4] Carnegie Mellon Univ, Heinz Coll, Pittsburgh, PA 15213 USA
[5] Stanford Univ, Sch Med, Stanford, CA USA
[6] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[7] IQVIA, Analyt Ctr Excellence, Cambridge, MA USA
[8] Univ Illinois, Dept Comp Sci, Champaign, IL USA
[9] Harvard Univ, Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[10] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[11] Harvard Data Sci Initiat, Cambridge, MA 02138 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1038/s41589-022-01131-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Artificial intelligence (AI) is poised to transform therapeutic science. Therapeutics Data Commons is an initiative to access and evaluate AI capability across therapeutic modalities and stages of discovery, establishing a foundation for understanding which AI methods are most suitable and why.
引用
收藏
页码:1033 / 1036
页数:4
相关论文
共 25 条
[1]   GuacaMol: Benchmarking Models for de Novo Molecular Design [J].
Brown, Nathan ;
Fiscato, Marco ;
Segler, Marwin H. S. ;
Vaucher, Alain C. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (03) :1096-1108
[2]   Image-based profiling for drug discovery: due for a machine-learning upgrade? [J].
Chandrasekaran, Srinivas Niranj ;
Ceulemans, Hugo ;
Boyd, Justin D. ;
Carpenter, Anne E. .
NATURE REVIEWS DRUG DISCOVERY, 2021, 20 (02) :145-159
[3]   The Synthesizability of Molecules Proposed by Generative Models [J].
Gao, Wenhao ;
Coley, Connor W. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) :5714-5723
[4]  
Gilmer J, 2017, PR MACH LEARN RES, V70
[5]   Accelerating high-throughput virtual screening through molecular pool-based active learning [J].
Graff, David E. ;
Shakhnovich, Eugene I. ;
Coley, Connor W. .
CHEMICAL SCIENCE, 2021, 12 (22) :7866-7881
[6]   Network medicine framework for identifying drug-repurposing opportunities for COVID-19 [J].
Gysi, Deisy Morselli ;
do Valle, Italo ;
Zitnik, Marinka ;
Ameli, Asher ;
Gan, Xiao ;
Varol, Onur ;
Ghiassian, Susan Dina ;
Patten, J. J. ;
Davey, Robert A. ;
Loscalzo, Joseph ;
Barabasi, Albert-Laszlo .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (19)
[7]   ADMET - turning chemicals into drugs [J].
Hodgson, J .
NATURE BIOTECHNOLOGY, 2001, 19 (08) :722-726
[8]  
Huang K., 2020, PREPRINT, DOI DOI 10.48550/ARXIV.2010.03951
[9]   Highly accurate protein structure prediction with AlphaFold [J].
Jumper, John ;
Evans, Richard ;
Pritzel, Alexander ;
Green, Tim ;
Figurnov, Michael ;
Ronneberger, Olaf ;
Tunyasuvunakool, Kathryn ;
Bates, Russ ;
Zidek, Augustin ;
Potapenko, Anna ;
Bridgland, Alex ;
Meyer, Clemens ;
Kohl, Simon A. A. ;
Ballard, Andrew J. ;
Cowie, Andrew ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Jain, Rishub ;
Adler, Jonas ;
Back, Trevor ;
Petersen, Stig ;
Reiman, David ;
Clancy, Ellen ;
Zielinski, Michal ;
Steinegger, Martin ;
Pacholska, Michalina ;
Berghammer, Tamas ;
Bodenstein, Sebastian ;
Silver, David ;
Vinyals, Oriol ;
Senior, Andrew W. ;
Kavukcuoglu, Koray ;
Kohli, Pushmeet ;
Hassabis, Demis .
NATURE, 2021, 596 (7873) :583-+
[10]   Impact of high-throughput screening in biomedical research [J].
Macarron, Ricardo ;
Banks, Martyn N. ;
Bojanic, Dejan ;
Burns, David J. ;
Cirovic, Dragan A. ;
Garyantes, Tina ;
Green, Darren V. S. ;
Hertzberg, Robert P. ;
Janzen, William P. ;
Paslay, Jeff W. ;
Schopfer, Ulrich ;
Sittampalam, G. Sitta .
NATURE REVIEWS DRUG DISCOVERY, 2011, 10 (03) :188-195