SPECULATOR: Emulating Stellar Population Synthesis for Fast and Accurate Galaxy Spectra and Photometry

被引:47
作者
Alsing, Justin [1 ]
Peiris, Hiranya [1 ,2 ]
Leja, Joel [3 ]
Hahn, ChangHoon [4 ,5 ]
Tojeiro, Rita [6 ]
Mortlock, Daniel [1 ,7 ]
Leistedt, Boris [8 ]
Johnson, Benjamin D. [3 ]
Conroy, Charlie [3 ]
机构
[1] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden
[2] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[3] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA
[4] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA
[6] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
[7] Imperial Coll London, Dept Phys, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England
[8] NYU, Dept Phys, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA
基金
瑞典研究理事会; 美国国家科学基金会;
关键词
Galaxies; Neural networks; Galaxy photometry; ENERGY-DISTRIBUTIONS; MODEL; UNCERTAINTIES; PROPAGATION; RELEASE; DUST; I;
D O I
10.3847/1538-4365/ab917f
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We presentspeculator-a fast, accurate, and flexible framework for emulating stellar population synthesis (SPS) models for predicting galaxy spectra and photometry. For emulating spectra, we use a principal component analysis to construct a set of basis functions and neural networks to learn the basis coefficients as a function of the SPS model parameters. For photometry, we parameterize the magnitudes (for the filters of interest) as a function of SPS parameters by a neural network. The resulting emulators are able to predict spectra and photometry under both simple and complicated SPS model parameterizations to percent-level accuracy, giving a factor of 10(3)-10(4)speedup over direct SPS computation. They have readily computable derivatives, making them amenable to gradient-based inference and optimization methods. The emulators are also straightforward to call from a GPU, giving an additional order of magnitude speedup. Rapid SPS computations delivered by emulation offers a massive reduction in the computational resources required to infer the physical properties of galaxies from observed spectra or photometry and simulate galaxy populations under SPS models, while maintaining the accuracy required for a range of applications.
引用
收藏
页数:13
相关论文
共 55 条
[1]  
Abadi M., 2016, TENSORFLOW LARGE SCA
[2]  
Aghamousa A., 2016, FERMILABPUB16517AE
[3]   Nuisance hardened data compression for fast likelihood-free inference [J].
Alsing, Justin ;
Wandelt, Benjamin .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (04) :5093-5103
[4]  
[Anonymous], 2016, PREPRINT ARXIVE PRIN
[5]  
[Anonymous], HYPERSPECTRAL IMAGE
[6]  
[Anonymous], ARXIV191112713
[7]  
[Anonymous], 2019, ARXIV190104454
[8]   SEDS: THE SPITZER EXTENDED DEEP SURVEY. SURVEY DESIGN, PHOTOMETRY, AND DEEP IRAC SOURCE COUNTS [J].
Ashby, M. L. N. ;
Willner, S. P. ;
Fazio, G. G. ;
Huang, J. -S. ;
Arendt, R. ;
Barmby, P. ;
Barro, G. ;
Bell, E. F. ;
Bouwens, R. ;
Cattaneo, A. ;
Croton, D. ;
Dave, R. ;
Dunlop, J. S. ;
Egami, E. ;
Faber, S. ;
Finlator, K. ;
Grogin, N. A. ;
Guhathakurta, P. ;
Hernquist, L. ;
Hora, J. L. ;
Illingworth, G. ;
Kashlinsky, A. ;
Koekemoer, A. M. ;
Koo, D. C. ;
Labbe, I. ;
Li, Y. ;
Lin, L. ;
Moseley, H. ;
Nandra, K. ;
Newman, J. ;
Noeske, K. ;
Ouchi, M. ;
Peth, M. ;
Rigopoulou, D. ;
Robertson, B. ;
Sarajedini, V. ;
Simard, L. ;
Smith, H. A. ;
Wang, Z. ;
Wechsler, R. ;
Weiner, B. ;
Wilson, G. ;
Wuyts, S. ;
Yamada, T. ;
Yan, H. .
ASTROPHYSICAL JOURNAL, 2013, 769 (01)
[9]   A CATALOG OF MID-INFRARED SOURCES IN THE EXTENDED GROTH STRIP [J].
Barmby, P. ;
Huang, J. -S. ;
Ashby, M. L. N. ;
Eisenhardt, P. R. M. ;
Fazio, G. G. ;
Willner, S. P. ;
Wright, E. L. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2008, 177 (02) :431-445
[10]   MOSFIRE Spectroscopy of Quiescent Galaxies at 1.5 < z < 2.5. II. Star Formation Histories and Galaxy Quenching [J].
Belli, Sirio ;
Newman, Andrew B. ;
Ellis, Richard S. .
ASTROPHYSICAL JOURNAL, 2019, 874 (01)