Fast parametrically excited van der Pol oscillator with time delay state feedback

被引:24
作者
Belhaq, Mohamed [1 ]
Sah, Si Mohamed [1 ]
机构
[1] Univ Hassan II Am Chock, Lab Mech, Casablanca, Morocco
关键词
time delay; vibration control; fast excitation; van der Pol oscillator;
D O I
10.1016/j.ijnonlinmec.2007.10.009
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We investigate the effect of a fast vertical parametric excitation on self-excited vibrations in a delayed van der Pol oscillator. We use the method of direct partition of motion to derive the main autonomous equation governing the slow dynamic in the vicinity of the trivial equilibrium. Then, we apply the multiple scales method on this slow dynamic to derive a second-order slow flow system describing the modulation of slow dynamic. In particular we analyze the slow flow to obtain the effect of a fast excitation on the regions in parameter space where self-excited vibrations can be eliminated. We have shown that in the case where the time delay and the feedback gains are imposed, fast vertical parametric excitation can be an alternative to suppress undesirable self-excited vibrations in a delayed van der Pol oscillator. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:124 / 130
页数:7
相关论文
共 17 条
[1]   Horizontal fast excitation in delayed van der Pol oscillator [J].
Belhaq, Mohamed ;
Sah, Si Mohamed .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (08) :1706-1713
[2]  
Blekhman II., 2000, VIBRATIONAL MECH, DOI [10.1142/4116, DOI 10.1142/4116]
[3]   Effect of fast harmonic excitation on a self-excited motion in Van der Pol oscillator [J].
Bourkha, Rachid ;
Belhaq, Mohamed .
CHAOS SOLITONS & FRACTALS, 2007, 34 (02) :621-627
[4]  
FIDLIN A, 2004, P 21 INT C THEOR APP
[5]   Resonances of a harmonically forced duffing oscillator with time delay state feedback [J].
Hu, HY ;
Dowell, EH ;
Virgin, LN .
NONLINEAR DYNAMICS, 1998, 15 (04) :311-327
[6]   Stability chart for the delayed Mathieu equation [J].
Insperger, T ;
Stépán, G .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2024) :1989-1998
[7]   Stability and dynamics of a controlled van der Pol-Duffing oscillator [J].
Ji, JC ;
Hansen, CH .
CHAOS SOLITONS & FRACTALS, 2006, 28 (02) :555-570
[8]   Vibration control for parametrically excited Lienard systems [J].
Maccari, A .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2006, 41 (01) :146-155
[9]   2:1 Resonance in the delayed nonlinear Mathieu equation [J].
Morrison, Tina M. ;
Rand, Richard H. .
NONLINEAR DYNAMICS, 2007, 50 (1-2) :341-352
[10]  
Nayfeh A.H., 1979, Nonlinear Oscillations