Constructing Lyapunov-Krasovskii functionals for linear time delay systems

被引:18
作者
Papachristodoulou, A [1 ]
Peet, M [1 ]
Lall, S [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
来源
ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7 | 2005年
关键词
D O I
10.1109/ACC.2005.1470401
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an algorithmic methodology for constructing Lyapunov-Krasovskii (L-K) functionals for linear time-delay systems, using the sum of squares decomposition of multivariate polynomials to solve the related infinite dimensional Linear Matrix Inequalities (LMIs). The resulting functionals retain the structure of the complete L-K functional and yield conditions that approach the true delay-dependent stability bounds. The method can also be used to construct parameter-dependent L-K functionals for certifying stability under parametric uncertainty.
引用
收藏
页码:2845 / 2850
页数:6
相关论文
共 16 条
[1]  
[Anonymous], 2003, MATH INTERNET CONGES
[2]   Lyapunov equation for the stability of linear delay systems of retarded and neutral type [J].
Bliman, PA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (02) :327-335
[3]  
Boy S., 1994, Linear MatrixInequalities in System and Control Theory
[4]   Symmetry groups, semidefinite programs, and sums of squares [J].
Gatermann, K ;
Parrilo, PA .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 192 (1-3) :95-128
[5]  
Gu K., 2003, CONTROL ENGN SER BIR, DOI 10.1007/978-1-4612-0039-0
[6]  
Kolmanovskii V., 1999, INTRO THEORY APPL FU
[7]   On the Liapunov-Krasovskii functionals for stability analysis of linear delay systems [J].
Kolmanovskii, VB ;
Niculescu, SI ;
Richard, JP .
INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (04) :374-384
[8]   SOME NP-COMPLETE PROBLEMS IN QUADRATIC AND NONLINEAR-PROGRAMMING [J].
MURTY, KG ;
KABADI, SN .
MATHEMATICAL PROGRAMMING, 1987, 39 (02) :117-129
[9]  
Niculescu S.-I., 2001, LECT NOTES CONTROL I, V269
[10]  
Paganini F, 2001, P 40 IEEE C DEC CONT