Number of A plus B ≠ C solutions in abelian groups and application to counting independent sets in hypergraphs

被引:1
作者
Semchankau, Aliaksei [1 ,2 ]
Shabanov, Dmitry [3 ,4 ]
Shkredov, Ilya [2 ,5 ,6 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Dept Dynam Syst Theory, Leninskie Gory 1, Moscow, Russia
[2] Russian Acad Sci, Steklov Math Inst, Gubkina 8, Moscow, Russia
[3] Moscow Inst Phys & Technol, Lab Combinatorial & Geometr Struct, Inst Skiy 9, Dolgoprudnyi, Moscow Region, Russia
[4] HSE Univ, Fac Comp Sci, Myasnitskaya Str 20, Moscow, Russia
[5] IITP RAS, Bolshoy Karetny 19, Moscow, Russia
[6] Moscow Inst Phys & Technol, Inst Skiy 9, Dolgoprudnyi, Moscow Region, Russia
关键词
ARITHMETIC PROGRESSIONS; GRAPHS;
D O I
10.1016/j.ejc.2021.103453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with a problem of Additive Combinatorics. Let G be a finite abelian group of order N. We prove that the number of subset triples A, B, C subset of G such that for any x is an element of A, y is an element of B and z is an element of C one has x+y not equal z equals 3.4(N) + N3(N+1) + O((3 - c(*))(N)) for some absolute constant c(*) > 0. This provides a tight estimate for the number of independent sets in a special 3-uniform linear hypergraph and disproves the conjecture of Cohen et al. (0000). concerning the maximal possible number of independent sets in such hypergraphs on n vertices. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 20 条
[1]   INDEPENDENT SETS IN REGULAR GRAPHS AND SUM-FREE SUBSETS OF FINITE-GROUPS [J].
ALON, N .
ISRAEL JOURNAL OF MATHEMATICS, 1991, 73 (02) :247-256
[2]  
Araujo I., ARXIV210105914
[3]   On the Number of Independent Sets in Simple Hypergraphs [J].
Balobanov, A. E. ;
Shabanov, D. A. .
MATHEMATICAL NOTES, 2018, 103 (1-2) :33-41
[4]  
Balogh J, 2015, J AM MATH SOC, V28, P669
[5]  
Cohen E., EUROPEAN J COMBIN, V99
[6]   Arithmetic Progressions in Sumsets and Lp-Almost-Periodicity [J].
Croot, Ernie ;
Laba, Izabella ;
Sisask, Olof .
COMBINATORICS PROBABILITY & COMPUTING, 2013, 22 (03) :351-365
[7]   Independent sets, matchings, and occupancy fractions [J].
Davies, Ewan ;
Jenssen, Matthew ;
Perkins, Will ;
Roberts, Barnaby .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 96 :47-66
[8]   Sum-free sets in abelian groups [J].
Green, B .
ISRAEL JOURNAL OF MATHEMATICS, 2005, 147 (1) :157-188
[9]   Arithmetic progressions in sumsets [J].
Green, B .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (03) :584-597
[10]  
Hamidoune Y.O., ARXIV08042593V1MATHN