Ricci flow smoothing for locally collapsing manifolds

被引:5
作者
Huang, Shaosai [1 ]
Wang, Bing [2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Sci & Technol China, Inst Geometry & Phys, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Sch Math Sci, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
关键词
53C21; 53C23; 53E20; NONNEGATIVE CURVATURE; RIEMANNIAN-MANIFOLDS; LOWER BOUNDS; SPACES; METRICS;
D O I
10.1007/s00526-021-02176-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for certain locally collapsing initial data with Ricci curvature bounded below, one could start the Ricci flow for a definite period of time. This provides a Ricci flow smoothing tool, with which we find topological conditions that detect the collapsing infranil fiber bundles over controlled Riemannian orbifolds among those locally collapsing regions with Ricci curvature bounded below. In the appendix, we also provide a local distance distortion estimate for certain Ricci flows with collapsing initial data.
引用
收藏
页数:32
相关论文
共 49 条
[1]   METRIC MEASURE SPACES WITH RIEMANNIAN RICCI CURVATURE BOUNDED FROM BELOW [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2014, 163 (07) :1405-1490
[2]  
[Anonymous], 2002, PREPRINT
[3]  
Bamler RH, 2016, MATH RES LETT, V23, P325
[4]   ON A CONSTRUCTION OF COORDINATES AT INFINITY ON MANIFOLDS WITH FAST CURVATURE DECAY AND MAXIMAL VOLUME GROWTH [J].
BANDO, S ;
KASUE, A ;
NAKAJIMA, H .
INVENTIONES MATHEMATICAE, 1989, 97 (02) :313-349
[5]   Almost Euclidean Isoperimetric Inequalities in Spaces Satisfying Local Ricci Curvature Lower Bounds [J].
Cavalletti, Fabio ;
Mondino, Andrea .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (05) :1481-1510
[6]   Pseudolocality for the Ricci Flow and Applications [J].
Chau, Albert ;
Tam, Luen-Fai ;
Yu, Chengjie .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (01) :55-85
[7]  
Cheeger J, 1997, J DIFFER GEOM, V46, P406
[8]   Lower bounds on Ricci curvature and the almost rigidity of warped products [J].
Cheeger, J ;
Colding, TH .
ANNALS OF MATHEMATICS, 1996, 144 (01) :189-237
[9]  
Cheeger J, 2000, J DIFFER GEOM, V54, P37
[10]  
Cheeger J., 1992, J AM MATH SOC, V5, P327, DOI 10.1090/S0894-0347-1992-1126118-X