Resonances of periodic orbits in Rossler system in presence of a triple-zero bifurcation

被引:15
作者
Algaba, Antonio [1 ]
Freire, Emilio [2 ]
Gamero, Estanislao [2 ]
Rodriguez-Luis, Alejandro J. [2 ]
机构
[1] Univ Huelva, Fac Ciencias Expt, Dept Math, Huelva 21071, Spain
[2] Univ Seville, ETS Ingn, Dept Appl Math 2, Seville 41092, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2007年 / 17卷 / 06期
关键词
triple-zero bifurcation; Rossler system; resonances; periodic orbits;
D O I
10.1142/S0218127407018178
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper focuses on resonance phenomena that occur in a vicinity of a linear degeneracy corresponding to a triple-zero eigenvalue of an equilibrium point in an autonomous tridimensional system. Namely, by means of blow-up techniques that relate the triple-zero bifurcation to the Kuramoto-Sivashinsky system, we characterize the resonances that appear near the triple-zero bifurcation. Using numerical tools, the results are applied to the Rossler equation, showing a number of interesting bifurcation behaviors associated to these resonance phenomena. In particular, the merging of the periodic orbits appeared in resonances, the existence of two types of Takens-Bogdanov bifurcations of periodic orbits and the presence of Feigenbaum cascades of these bifurcations, joined by invariant tori curves, are pointed out.
引用
收藏
页码:1997 / 2008
页数:12
相关论文
共 19 条
[1]   Hypernormal form for the Hopf-zero bifurcation [J].
Algaba, A ;
Freire, E ;
Gamero, E .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (10) :1857-1887
[2]   Some results on Chua's equation near a triple-zero linear degeneracy [J].
Algaba, A ;
Merino, M ;
Freire, E ;
Gamero, E ;
Rodríguez-Luis, AJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (03) :583-608
[3]  
Arnold V. I., 1983, GEOMETRICAL METHODS
[4]  
Chow SN., 1994, Normal forms and Bifurcation of planar vector fields, DOI 10.1017/CBO9780511665639
[5]  
Doedel E.J., 1998, AUTO97 CONTINUATION
[6]   New aspects in the unfolding of the nilpotent singularity of codimension three [J].
Dumortier, F ;
Ibáñez, S ;
Kokubu, H .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2001, 16 (01) :63-95
[7]   A note on the triple-zero linear degeneracy:: Normal forms, dynamical and bifurcation behaviors of an unfolding [J].
Freire, E ;
Gamero, E ;
Rodríguez-Luis, AJ ;
Algaba, A .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (12) :2799-2820
[8]  
GAMERO E, 1995, ACTAS ELECT 14 CEDYA
[9]  
Guckenheimer J., 1995, DSTOOL DYNAMICAL SYS
[10]  
GUCKENHEIMER J, 1997, APPL MATH SCI SERIES, V42