Nonpropagating solitary waves in (2+1)-dimensional nonlinear systems

被引:0
作者
Meng, JP [1 ]
Zhang, JF [1 ]
机构
[1] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China
关键词
solitary wave; homogeneous balance method; nonlinear system;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By means of extended homogeneous balance method and variable separation approach, quite a general variable separation solution of the (2+1)-dimensional Broer-Kaup-Kupershmidt equation is derived. From the variable separation solution and by selecting appropriate functions, a new class of (2+1)-dimensional nonpropagating solitary waves are found. The novel features exhibited by these new structures are first revealed.
引用
收藏
页码:831 / 836
页数:6
相关论文
共 53 条
[1]  
Chen CL, 2002, COMMUN THEOR PHYS, V38, P129
[2]   NONPROPAGATING INTERFACE SOLITARY WAVES IN FLUIDS [J].
CHEN, WH ;
WEI, RJ ;
WANG, BR .
PHYSICS LETTERS A, 1995, 208 (03) :197-202
[3]   OBSERVATION OF A KINK SOLITON ON THE SURFACE OF A LIQUID [J].
DENARDO, B ;
WRIGHT, W ;
PUTTERMAN, S ;
LARRAZA, A .
PHYSICAL REVIEW LETTERS, 1990, 64 (13) :1518-1521
[4]  
Drazin P.G., 1989, SOLITONS INTRO
[5]  
Hong KZ, 2003, COMMUN THEOR PHYS, V39, P393
[6]  
KORTEWEG DJ, 1895, PHILOS MAG, V39, P422, DOI DOI 10.1080/14786449508620739
[7]   THEORY OF NON-PROPAGATING SURFACE-WAVE SOLITONS [J].
LARRAZA, A ;
PUTTERMAN, S .
JOURNAL OF FLUID MECHANICS, 1984, 148 (NOV) :443-449
[8]  
Lou S.Y., 1996, J. Phys. A Math. Gen, V29, P4029, DOI [10.1088/0305-4470/29/14/038, DOI 10.1088/0305-4470/29/14/038]
[9]   Infinitely many Lax pairs and symmetry constraints of the KP equation [J].
Lou, SY ;
Hu, XB .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (12) :6401-6427
[10]   (2+1)-dimensional compacton solutions with and without completely elastic interaction properties [J].
Lou, SY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (49) :10619-10628