Targeting Non-coding RNA in Vascular Biology and Disease

被引:52
作者
Hung, John [1 ,2 ]
Miscianinov, Vladislav [1 ]
Sluimer, Judith C. [3 ]
Newby, David E. [2 ]
Baker, Andrew H. [1 ]
机构
[1] Univ Edinburgh, Ctr Cardiovasc Sci, Edinburgh, Midlothian, Scotland
[2] Univ Edinburgh, Ctr Cardiovasc Sci, Clin Sci, Edinburgh, Midlothian, Scotland
[3] Maastricht Univ, Med Ctr, Maastricht, Netherlands
来源
FRONTIERS IN PHYSIOLOGY | 2018年 / 9卷
关键词
vascular disease; atherosclerosis; ncRNA; microRNA; lncRNA; ACUTE MYOCARDIAL-INFARCTION; SMOOTH-MUSCLE-CELLS; CIRCULATING MICRORNAS; CHOLESTEROL EFFLUX; ATHEROSCLEROTIC PLAQUES; INFLAMMATORY RESPONSE; NEOINTIMA FORMATION; NUCLEAR EXPORT; UP-REGULATION; IN-VITRO;
D O I
10.3389/fphys.2018.01655
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Only recently have we begun to appreciate the importance and complexity of the non-coding genome, owing in some part to truly significant advances in genomic technology such as RNA sequencing and genome-wide profiling studies. Previously thought to be non-functional transcriptional "noise," non-coding RNAs (ncRNAs) are now known to play important roles in many diverse biological pathways, not least in vascular disease. While microRNAs (miRNA) are known to regulate protein-coding gene expression principally through mRNA degradation, long non-coding RNAs (lncRNAs) can activate and repress genes by a variety of mechanisms at both transcriptional and translational levels. These versatile molecules, with complex secondary structures, may interact with chromatin, proteins, and other RNA to form complexes with an array of functional consequences. A body of emerging evidence indicates that both classes of ncRNAs regulate multiple physiological and pathological processes in vascular physiology and disease. While dozens of miRNAs are now implicated and described in relative mechanistic depth, relatively fewer lncRNAs are well described. However, notable examples include ANRIL, SMILR, and SENCR in vascular smooth muscle cells; MALAT1 and GATA-6S in endothelial cells; and mitochondrial lncRNA LIPCAR as a powerful biomarker. Due to such ubiquitous involvement in pathology and well-known biogenesis and functional genetics, novel miRNA-based therapies and delivery methods are now in development, including some early stage clinical trials. Although lncRNAs may hold similar potential, much more needs to be understood about their relatively complex molecular behaviours before realistic translation into novel therapies. Here, we review the current understanding of the mechanism and function of ncRNA, focusing on miRNAs and lncRNAs in vascular disease and atherosclerosis. We discuss existing therapies and current delivery methods, emphasising the importance of miRNAs and lncRNAs as effectors and biomarkers in vascular pathology.
引用
收藏
页数:16
相关论文
共 172 条
[1]   Regulation of microRNA expression in vascular smooth muscle by MRTF-A and actin polymerization [J].
Alajbegovic, Azra ;
Turczynska, Karolina M. ;
Hien, Tran Thi ;
Cidad, Pilar ;
Sward, Karl ;
Hellstrand, Per ;
Della Corte, Alessandro ;
Forte, Amalia ;
Albinsson, Sebastian .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2017, 1864 (06) :1088-1098
[2]   A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle Performance [J].
Anderson, Douglas M. ;
Anderson, Kelly M. ;
Chang, Chi-Lun ;
Makarewich, Catherine A. ;
Nelson, Benjamin R. ;
McAnally, John R. ;
Kasaragod, Prasad ;
Shelton, John M. ;
Liou, Jen ;
Bassel-Duby, Rhonda ;
Olson, Eric N. .
CELL, 2015, 160 (04) :595-606
[3]   Long non-coding RNAs in the atherosclerotic plaque [J].
Arslan, Serdal ;
Berkan, Ocal ;
Lalem, Torkia ;
Ozbilum, Nil ;
Goksel, Sabahattin ;
Korkmaz, Ozge ;
Cetin, Nilgun ;
Devaux, Yvan .
ATHEROSCLEROSIS, 2017, 266 :176-181
[4]   OCT4 pseudogene 5 upregulates OCT4 expression to promote proliferation by competing with miR-145 in endometrial carcinoma [J].
Bai, Mingzhu ;
Yuan, Mu ;
Liao, Hong ;
Chen, Jiazhou ;
Xie, Binying ;
Yan, Dong ;
Xi, Xiaowei ;
Xu, Xianming ;
Zhang, Zhenbo ;
Feng, Youji .
ONCOLOGY REPORTS, 2015, 33 (04) :1745-1752
[5]   Smooth Muscle Enriched Long Noncoding RNA (SMILR) Regulates Cell Proliferation [J].
Ballantyne, Margaret D. ;
Pinel, Karine ;
Dakin, Rachel ;
Vesey, Alex T. ;
Diver, Louise ;
Mackenzie, Ruth ;
Garcia, Raquel ;
Welsh, Paul ;
Sattar, Naveed ;
Hamilton, Graham ;
Joshi, Nikhil ;
Dweck, Marc R. ;
Miano, Joseph M. ;
McBride, Martin W. ;
Newby, David E. ;
McDonald, Robert A. ;
Baker, Andrew H. .
CIRCULATION, 2016, 133 (21) :2050-2065
[6]   Effects of torcetrapib in patients at high risk for coronary events [J].
Barter, Philip J. ;
Caulfield, Mark ;
Eriksson, Mats ;
Grundy, Scott M. ;
Kastelein, John J. P. ;
Komajda, Michel ;
Lopez-Sendon, Jose ;
Mosca, Lori ;
Tardif, Jean-Claude ;
Waters, David D. ;
Shear, Charles L. ;
Revkin, James H. ;
Buhr, Kevin A. ;
Fisher, Marian R. ;
Tall, Alan R. ;
Brewer, Bryan .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (21) :2109-2122
[7]   Acute Loss of miR-221 and miR-222 in the Atherosclerotic Plaque Shoulder Accompanies Plaque Rupture [J].
Bazan, Hernan A. ;
Hatfield, Samuel A. ;
O'Malley, Chasity B. ;
Brooks, Ashton J. ;
Lightell, Daniel, Jr. ;
Woods, T. Cooper .
STROKE, 2015, 46 (11) :3285-3287
[8]   Identification and Initial Functional Characterization of a Human Vascular Cell-Enriched Long Noncoding RNA [J].
Bell, Robert D. ;
Long, Xiaochun ;
Lin, Mingyan ;
Bergmann, Jan H. ;
Nanda, Vivek ;
Cowan, Sarah L. ;
Zhou, Qian ;
Han, Yu ;
Spector, David L. ;
Zheng, Deyou ;
Miano, Joseph M. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2014, 34 (06) :1249-1259
[9]   Single Intracoronary Injection of Encapsulated Antagomir-92a Promotes Angiogenesis and Prevents Adverse Infarct Remodeling [J].
Bellera, Neus ;
Barba, Ignasi ;
Rodriguez-Sinovas, Antonio ;
Ferret, Eulalia ;
Angel Asin, Miguel ;
Teresa Gonzalez-Alujas, Ma ;
Perez-Rodon, Jordi ;
Esteves, Marielle ;
Fonseca, Carla ;
Toran, Nuria ;
Garcia del Blanco, Bruno ;
Perez, Amadeo ;
Garcia-Dorado, David .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2014, 3 (05)
[10]  
BEUTLER E, 1990, BIOTECHNIQUES, V9, P166