Development and validation of a deep learning-based model for predicting burnup nuclide density
被引:10
作者:
Lei, Jichong
论文数: 0引用数: 0
h-index: 0
机构:
Univ South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Univ South China, Res Ctr Digital Nucl Reactor Engn & Technol Hunan, Hengyang, Peoples R ChinaUniv South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Lei, Jichong
[1
,2
]
Yang, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Univ South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Univ South China, Res Ctr Digital Nucl Reactor Engn & Technol Hunan, Hengyang, Peoples R ChinaUniv South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Yang, Chao
[1
,2
]
Ren, Changan
论文数: 0引用数: 0
h-index: 0
机构:
Univ South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Hunan Inst Technol, Coll Comp Sci & Engn, Hengyang, Peoples R ChinaUniv South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Ren, Changan
[1
,3
]
Li, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Univ South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R ChinaUniv South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Li, Wei
[1
]
Liu, Chengwei
论文数: 0引用数: 0
h-index: 0
机构:
Univ South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Univ South China, Res Ctr Digital Nucl Reactor Engn & Technol Hunan, Hengyang, Peoples R ChinaUniv South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Liu, Chengwei
[1
,2
]
Sun, Aikou
论文数: 0引用数: 0
h-index: 0
机构:
Univ South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Univ South China, Res Ctr Digital Nucl Reactor Engn & Technol Hunan, Hengyang, Peoples R ChinaUniv South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Sun, Aikou
[1
,2
]
Li, Yukun
论文数: 0引用数: 0
h-index: 0
机构:
Univ South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Univ South China, Res Ctr Digital Nucl Reactor Engn & Technol Hunan, Hengyang, Peoples R ChinaUniv South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Li, Yukun
[1
,2
]
Chen, Zhenping
论文数: 0引用数: 0
h-index: 0
机构:
Univ South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Univ South China, Res Ctr Digital Nucl Reactor Engn & Technol Hunan, Hengyang, Peoples R ChinaUniv South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Chen, Zhenping
[1
,2
]
Yu, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Univ South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Univ South China, Res Ctr Digital Nucl Reactor Engn & Technol Hunan, Hengyang, Peoples R ChinaUniv South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
Yu, Tao
[1
,2
]
机构:
[1] Univ South China, Sch Nucl Sci & Technol, Hengyang 421000, Hunan, Peoples R China
[2] Univ South China, Res Ctr Digital Nucl Reactor Engn & Technol Hunan, Hengyang, Peoples R China
[3] Hunan Inst Technol, Coll Comp Sci & Engn, Hengyang, Peoples R China
burnup prediction;
deep learning;
deep neural network;
DRAGON;
nuclide density;
D O I:
10.1002/er.8338
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
To address the issue of large inaccuracies in the low-burnup region of aditonal machine learning algorithms for predicting nuclide density, the DRAGON code is used to produce 9600 samples using the nuclide densities of U-235, Pu-239, Pu-241, Cs-137, and Nd-154 as prediction parameters. The mean square error (MSE) was used as the loss function for the deep neural network-based nuclide density prediction model. The trained model is used to predict the target nuclides in the test set, and the relative error with the multilayer perceptron model are compared. The prediction results demonstrate that the deep neural network-based prediction model not only overcomes the issue of excessive prediction errors in the low-burnup region of the traditional machine learning algorithm model, but also has lower prediction errors in the medium-burnup and high-burnup regions, demonstrating the feasibility of artificial intelligence in nuclide density prediction.
机构:
AGH Univ Sci & Technol, Fac Energy & Fuels, Al Mickiewicza 30, PL-30059 Krakow, PolandAGH Univ Sci & Technol, Fac Energy & Fuels, Al Mickiewicza 30, PL-30059 Krakow, Poland
机构:
South China Univ Technol, Sch Elect Power, Guangzhou 510641, Guangdong, Peoples R China
Guangdong Key Lab Clean Energy Technol, Guangzhou 510641, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Elect Power, Guangzhou 510641, Guangdong, Peoples R China
Cheng, Lefeng
Yu, Tao
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Elect Power, Guangzhou 510641, Guangdong, Peoples R China
Guangdong Key Lab Clean Energy Technol, Guangzhou 510641, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Elect Power, Guangzhou 510641, Guangdong, Peoples R China
机构:
AGH Univ Sci & Technol, Fac Energy & Fuels, Al Mickiewicza 30, PL-30059 Krakow, PolandAGH Univ Sci & Technol, Fac Energy & Fuels, Al Mickiewicza 30, PL-30059 Krakow, Poland
机构:
South China Univ Technol, Sch Elect Power, Guangzhou 510641, Guangdong, Peoples R China
Guangdong Key Lab Clean Energy Technol, Guangzhou 510641, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Elect Power, Guangzhou 510641, Guangdong, Peoples R China
Cheng, Lefeng
Yu, Tao
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Elect Power, Guangzhou 510641, Guangdong, Peoples R China
Guangdong Key Lab Clean Energy Technol, Guangzhou 510641, Guangdong, Peoples R ChinaSouth China Univ Technol, Sch Elect Power, Guangzhou 510641, Guangdong, Peoples R China