The human-in-the-loop: an evaluation of pathologists' interaction with artificial intelligence in clinical practice

被引:15
|
作者
Boden, Anna C. S. [1 ,2 ]
Molin, Jesper [3 ]
Garvin, Stina [1 ]
West, Rebecca A. [4 ,5 ]
Lundstrom, Claes [2 ,3 ]
Treanor, Darren [1 ,2 ,4 ,6 ]
机构
[1] Linkoping Univ, Dept Clin Pathol, Dept Biomed & Clin Sci, Linkoping, Sweden
[2] Linkoping Univ, Ctr Med Image Sci & Visualizat, Linkoping, Sweden
[3] Sectra AB, Linkoping, Sweden
[4] Leeds Teaching Hosp NHS Trust, Leeds, W Yorkshire, England
[5] Dewsbury & Dist Hosp, Dept Histopathol, Dewsbury, England
[6] Univ Leeds, Pathol & Data Analyt, Leeds, W Yorkshire, England
关键词
artificial intelligence; breast cancer; computational pathology; digital image analysis (DIA); digital pathology; human-in-the-loop; Ki67; machine learning; INTERNATIONAL EXPERT CONSENSUS; DIGITAL IMAGE-ANALYSIS; BREAST-CANCER; PRIMARY THERAPY; KI67; REPRODUCIBILITY; MICROSCOPY; BIOMARKERS; GUIDELINES;
D O I
10.1111/his.14356
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Aims: One of the major drivers of the adoption of digital pathology in clinical practice is the possibility of introducing digital image analysis (DIA) to assist with diagnostic tasks. This offers potential increases in accuracy, reproducibility, and efficiency. Whereas stand-alone DIA has great potential benefit for research, little is known about the effect of DIA assistance in clinical use. The aim of this study was to investigate the clinical use characteristics of a DIA application for Ki67 proliferation assessment. Specifically, the human-in-the-loop interplay between DIA and pathologists was studied. Methods and results: We retrospectively investigated breast cancer Ki67 areas assessed with human-in-the-loop DIA and compared them with visual and automatic approaches. The results, expressed as standard deviation of the error in the Ki67 index, showed that visual estimation ('eyeballing') (14.9 percentage points) performed significantly worse (P < 0.05) than DIA alone (7.2 percentage points) and DIA with human-in-the-loop corrections (6.9 percentage points). At the overall level, no improvement resulting from the addition of human-in-the-loop corrections to the automatic DIA results could be seen. For individual cases, however, human-in-the-loop corrections could address major DIA errors in terms of poor thresholding of faint staining and incorrect tumour-stroma separation. Conclusion: The findings indicate that the primary value of human-in-the-loop corrections is to address major weaknesses of a DIA application, rather than fine-tuning the DIA quantifications.
引用
收藏
页码:210 / 218
页数:9
相关论文
共 50 条
  • [21] A Systematic Review of Human-Computer Interaction and Explainable Artificial Intelligence in Healthcare With Artificial Intelligence Techniques
    Nazar, Mobeen
    Alam, Muhammad Mansoor
    Yafi, Eiad
    Su'ud, Mazliham Mohd
    IEEE ACCESS, 2021, 9 : 153316 - 153348
  • [22] Artificial intelligence in clinical practice: quality and evidence
    Puchades, R.
    Ramos-Ruperto, L.
    REVISTA CLINICA ESPANOLA, 2025, 225 (01): : 23 - 27
  • [23] How will clinical practice be impacted by artificial intelligence?
    Jacques Biot
    European Journal of Dermatology, 2019, 29 : 8 - 10
  • [24] Clinical Evaluation of Artificial Intelligence-Enabled Interventions
    Hogg, H. D. Jeffry
    Martindale, Alexander P. L.
    Liu, Xiaoxuan
    Denniston, Alastair K.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (10)
  • [25] Will Artificial Intelligence Replace the Human Echocardiographer?: Clinical Considerations
    Sengupta, Partho P.
    Adjeroh, Donald A.
    CIRCULATION, 2018, 138 (16) : 1639 - 1642
  • [26] How will clinical practice be impacted by artificial intelligence?
    Biot, Jacques
    EUROPEAN JOURNAL OF DERMATOLOGY, 2019, 29 (Suppl 1) : 8 - 10
  • [27] Critical evaluation of artificial intelligence as a digital twin of pathologists for prostate cancer pathology
    Okyaz Eminaga
    Mahmoud Abbas
    Christian Kunder
    Yuri Tolkach
    Ryan Han
    James D. Brooks
    Rosalie Nolley
    Axel Semjonow
    Martin Boegemann
    Robert West
    Jin Long
    Richard E. Fan
    Olaf Bettendorf
    Scientific Reports, 14
  • [28] Critical evaluation of artificial intelligence as a digital twin of pathologists for prostate cancer pathology
    Eminaga, Okyaz
    Abbas, Mahmoud
    Kunder, Christian
    Tolkach, Yuri
    Han, Ryan
    Brooks, James D.
    Nolley, Rosalie
    Semjonow, Axel
    Boegemann, Martin
    West, Robert
    Long, Jin
    Fan, Richard E.
    Bettendorf, Olaf
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [29] Editorial: On the "Human" in Human-Artificial Intelligence Interaction
    Triberti, Stefano
    Durosini, Ilaria
    Lin, Jianyi
    La Torre, Davide
    Ruiz Galan, Manuel
    FRONTIERS IN PSYCHOLOGY, 2021, 12
  • [30] Human-in-the-loop Hybrid-augmented Intelligence Method for Power System Dispatching: Basic Concept and Research Framework
    Qiao J.
    Guo J.
    Fan S.
    Huang Y.
    Shang Y.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2023, 43 (01): : 1 - 14