The human-in-the-loop: an evaluation of pathologists' interaction with artificial intelligence in clinical practice

被引:19
作者
Boden, Anna C. S. [1 ,2 ]
Molin, Jesper [3 ]
Garvin, Stina [1 ]
West, Rebecca A. [4 ,5 ]
Lundstrom, Claes [2 ,3 ]
Treanor, Darren [1 ,2 ,4 ,6 ]
机构
[1] Linkoping Univ, Dept Clin Pathol, Dept Biomed & Clin Sci, Linkoping, Sweden
[2] Linkoping Univ, Ctr Med Image Sci & Visualizat, Linkoping, Sweden
[3] Sectra AB, Linkoping, Sweden
[4] Leeds Teaching Hosp NHS Trust, Leeds, W Yorkshire, England
[5] Dewsbury & Dist Hosp, Dept Histopathol, Dewsbury, England
[6] Univ Leeds, Pathol & Data Analyt, Leeds, W Yorkshire, England
关键词
artificial intelligence; breast cancer; computational pathology; digital image analysis (DIA); digital pathology; human-in-the-loop; Ki67; machine learning; INTERNATIONAL EXPERT CONSENSUS; DIGITAL IMAGE-ANALYSIS; BREAST-CANCER; PRIMARY THERAPY; KI67; REPRODUCIBILITY; MICROSCOPY; BIOMARKERS; GUIDELINES;
D O I
10.1111/his.14356
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Aims: One of the major drivers of the adoption of digital pathology in clinical practice is the possibility of introducing digital image analysis (DIA) to assist with diagnostic tasks. This offers potential increases in accuracy, reproducibility, and efficiency. Whereas stand-alone DIA has great potential benefit for research, little is known about the effect of DIA assistance in clinical use. The aim of this study was to investigate the clinical use characteristics of a DIA application for Ki67 proliferation assessment. Specifically, the human-in-the-loop interplay between DIA and pathologists was studied. Methods and results: We retrospectively investigated breast cancer Ki67 areas assessed with human-in-the-loop DIA and compared them with visual and automatic approaches. The results, expressed as standard deviation of the error in the Ki67 index, showed that visual estimation ('eyeballing') (14.9 percentage points) performed significantly worse (P < 0.05) than DIA alone (7.2 percentage points) and DIA with human-in-the-loop corrections (6.9 percentage points). At the overall level, no improvement resulting from the addition of human-in-the-loop corrections to the automatic DIA results could be seen. For individual cases, however, human-in-the-loop corrections could address major DIA errors in terms of poor thresholding of faint staining and incorrect tumour-stroma separation. Conclusion: The findings indicate that the primary value of human-in-the-loop corrections is to address major weaknesses of a DIA application, rather than fine-tuning the DIA quantifications.
引用
收藏
页码:210 / 218
页数:9
相关论文
共 29 条
[1]   Ki67 reproducibility using digital image analysis: an inter-platform and inter-operator study [J].
Acs, Balazs ;
Pelekanou, Vasiliki ;
Bai, Yalai ;
Martinez-Morilla, Sandra ;
Toki, Maria ;
Leung, Samuel C. Y. ;
Nielsen, Torsten O. ;
Rimm, David L. .
LABORATORY INVESTIGATION, 2019, 99 (01) :107-117
[2]  
Aeffner Famke, 2019, J Pathol Inform, V10, P9, DOI 10.4103/jpi.jpi_82_18
[3]   Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists [J].
Bulten, Wouter ;
Balkenhol, Maschenka ;
Belinga, Jean-Joel Awoumou ;
Brilhante, Americo ;
Cakir, Asli ;
Egevad, Lars ;
Eklund, Martin ;
Farre, Xavier ;
Geronatsiou, Katerina ;
Molinie, Vincent ;
Pereira, Guilherme ;
Roy, Paromita ;
Saile, Gunter ;
Salles, Paulo ;
Schaafsma, Ewout ;
Tschui, Joelle ;
Vos, Anne-Marie ;
van Boven, Hester ;
Vink, Robert ;
van der Laak, Jeroen ;
Hulsbergen-van der Kaa, Christina ;
Litjens, Geert .
MODERN PATHOLOGY, 2021, 34 (03) :660-671
[4]   Enabling digital pathology in the diagnostic setting: navigating through the implementation journey in an academic medical centre [J].
Cheng, Chee Leong ;
Azhar, Rafay ;
Sng, Shi Hui Adeline ;
Chua, Yong Quan ;
Hwang, Jacqueline Siok Gek ;
Chin, Jennifer Poi Fun ;
Seah, Waih Khuen ;
Loke, Janel Chui Ling ;
Ang, Roy Hang Leng ;
Tan, Puay Hoon .
JOURNAL OF CLINICAL PATHOLOGY, 2016, 69 (09) :784-792
[5]   De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017 [J].
Curigliano, G. ;
Burstein, H. J. ;
Winer, E. P. ;
Gnant, M. ;
Dubsky, P. ;
Loibl, S. ;
Colleoni, M. ;
Regan, M. M. ;
Piccart-Gebhart, M. ;
Senn, H. -J. ;
Thurlimann, B. ;
Andre, F. ;
Baselga, J. ;
Bergh, J. ;
Bonnefoi, H. ;
Brucker, S. Y. ;
Cardoso, F. ;
Carey, L. ;
Ciruelos, E. ;
Cuzick, J. ;
Denkert, C. ;
Di Leo, A. ;
Ejlertsen, B. ;
Francis, P. ;
Galimberti, V. ;
Garber, J. ;
Gulluoglu, B. ;
Goodwin, P. ;
Harbeck, N. ;
Hayes, D. F. ;
Huang, C. -S. ;
Huober, J. ;
Khaled, H. ;
Jassem, J. ;
Jiang, Z. ;
Karlsson, P. ;
Morrow, M. ;
Orecchia, R. ;
Osborne, K. C. ;
Pagani, O. ;
Partridge, A. H. ;
Pritchard, K. ;
Ro, J. ;
Rutgers, E. J. T. ;
Sedlmayer, F. ;
Semiglazov, V. ;
Shao, Z. ;
Smith, I. ;
Toi, M. ;
Tutt, A. .
ANNALS OF ONCOLOGY, 2017, 28 (08) :1700-1712
[6]   Strategies for developing Ki67 as a useful biomarker in breast cancer [J].
Denkert, Carsten ;
Budczies, Jan ;
von Minckwitz, Gunter ;
Wienert, Stephan ;
Loibl, Sibylle ;
Klauschen, Frederick .
BREAST, 2015, 24 :S67-S72
[7]   Assessment of Ki67 in Breast Cancer: Recommendations from the International Ki67 in Breast Cancer Working Group [J].
Dowsett, Mitch ;
Nielsen, Torsten O. ;
A'Hern, Roger ;
Bartlett, John ;
Coombes, R. Charles ;
Cuzick, Jack ;
Ellis, Matthew ;
Henry, N. Lynn ;
Hugh, Judith C. ;
Lively, Tracy ;
McShane, Lisa ;
Paik, Soon ;
Penault-Llorca, Frederique ;
Prudkin, Ljudmila ;
Regan, Meredith ;
Salter, Janine ;
Sotiriou, Christos ;
Smith, Ian E. ;
Viale, Giuseppe ;
Zujewski, Jo Anne ;
Hayes, Daniel F. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2011, 103 (22) :1656-1664
[8]   Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM) [J].
Duffy, M. J. ;
Harbeck, N. ;
Nap, M. ;
Molina, R. ;
Nicolini, A. ;
Senkus, E. ;
Cardoso, F. .
EUROPEAN JOURNAL OF CANCER, 2017, 75 :284-298
[9]   Highly reproducible results of breast cancer biomarkers when analysed in accordance with national guidelines - a Swedish survey with central re-assessment [J].
Ekholm, Maria ;
Grabau, Dorthe ;
Bendahl, Par-Ola ;
Bergh, Jonas ;
Elmberger, Goran ;
Olsson, Hans ;
Russo, Leila ;
Viale, Giuseppe ;
Ferno, Marten .
ACTA ONCOLOGICA, 2015, 54 (07) :1040-1048
[10]   Clinical Decision Support for Ovarian Carcinoma Subtype Classification A Pilot Observer Study With Pathology Trainees [J].
Gavrielides, Marios A. ;
Miller, Meghan ;
Hagemann, Ian S. ;
Abdelal, Heba ;
Alipour, Zahra ;
Chen, Jie-Fu ;
Salari, Behzad ;
Sun, Lulu ;
Zhou, Huifang ;
Seidman, Jeffrey D. .
ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2020, 144 (07) :869-877