Injective envelopes of C*-algebras as operator modules

被引:20
作者
Frank, M [1 ]
Paulsen, VI
机构
[1] Univ Leipzig, Math Inst, D-04109 Leipzig, Germany
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
关键词
D O I
10.2140/pjm.2003.212.57
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give some characterizations of M. Hamana's injective envelope I(A) of a C*-algebra A in the setting of operator spaces and completely bounded maps. These characterizations lead to simplifications and generalizations of some known results concerning completely bounded projections onto C*-algebras. We prove that I(A) is rigid for completely bounded A-module maps. This rigidity yields a natural representation of many kinds of multipliers as multiplications by elements of I(A). In particular, we prove that the(n times iterated) local multiplier algebra of A embeds into I(A).
引用
收藏
页码:57 / 69
页数:13
相关论文
共 29 条
[1]   A LOCAL VERSION OF THE DAUNS-HOFMANN THEOREM [J].
ARA, P ;
MATHIEU, M .
MATHEMATISCHE ZEITSCHRIFT, 1991, 208 (03) :349-353
[3]  
BLECHER D, 2000, MEMOIRS AM MATH SOC, V143
[4]   Multipliers of operator spaces, and the injective envelope [J].
Blecher, DP ;
Paulsen, VI .
PACIFIC JOURNAL OF MATHEMATICS, 2001, 200 (01) :1-17
[5]   QUASI-EXPECTATIONS AND AMENABLE VONNEUMANN ALGEBRAS [J].
BUNCE, JW ;
PASCHKE, WL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 71 (02) :232-236
[6]   SCHWARZ INEQUALITY FOR POSITIVE LINEAR MAPS ON C-STAR-ALGEBRAS [J].
CHOI, MD .
ILLINOIS JOURNAL OF MATHEMATICS, 1974, 18 (04) :565-574
[7]  
CHRISTENSEN E, 1995, P LOND MATH SOC, V71, P618
[8]   ON VON-NEUMANN-ALGEBRAS WHICH ARE COMPLEMENTED SUBSPACES OF B(H) [J].
CHRISTENSEN, E ;
SINCLAIR, AM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (01) :91-102
[9]  
Dixmier J., 1951, Sum. Bras. Math, VII, P151
[10]   On Hahn-Banach type theorems for hilbert C*-modules [J].
Frank, M .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2002, 13 (07) :675-693