Distributionally robust hydro-thermal-wind economic dispatch

被引:124
作者
Chen, Yue [1 ]
Wei, Wei [1 ]
Liu, Feng [1 ]
Mei, Shengwei [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Distributionally robust optimization; Hydro-thermal-wind dispatch; Uncertainty; UNIT COMMITMENT; OPTIMIZATION PROBLEMS; POWER; ENERGY; UNCERTAINTY; INTEGRATION; GENERATION; RISK;
D O I
10.1016/j.apenergy.2016.04.060
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the penetration of wind energy increasing, uncertainty has become a major challenge in power system dispatch. Hydro power can change rapidly and is regarded as one promising complementary energy resource to mitigate wind power fluctuation. Joint scheduling of hydro, thermal, and wind energy is attracting more and more attention nowadays. This paper proposes a distributionally robust hydro-thermal-wind economic dispatch (DR-HTW-ED) method to enhance the flexibility and reliability of power system operation. In contrast to the traditional stochastic optimization (SO) and adjustable robust optimization (ARO) method, distributionally robust optimization (DRO) method describes the uncertain wind power output by all possible probability distribution functions (PDFs) with the same mean and variance recovered from the forecast data, and optimizes the expected operation cost in the worst distribution. Traditional DRO optimized the random parameter in entire space, which is sometimes contradict to the actual situation. In this paper, we restrict the wind power uncertainty in a bounded set, and derive an equivalent semi-definite programming (SDP) for the DR-HTW-ED using S-lemma. A delayed constraint generation algorithm is suggested to solve it in a tractable manner. The proposed DR-HTW-ED is compared with the existing ARO based hydro-thermal-wind economic dispatch (AR-HTW-ED). Their respective features are shown from the perspective of computational efficiency and conservativeness of dispatch strategies. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:511 / 519
页数:9
相关论文
共 31 条
[1]   Joint market clearing in a stochastic framework considering power system security [J].
Aghaei, J. ;
Shayanfar, H. A. ;
Amjady, N. .
APPLIED ENERGY, 2009, 86 (09) :1675-1682
[2]   Multi-Area Energy and Reserve Dispatch Under Wind Uncertainty and Equipment Failures [J].
Ahmadi-Khatir, Ali ;
Conejo, Antonio J. ;
Cherkaoui, Rachid .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (04) :4373-4383
[3]   Adaptive Robust Optimization for the Security Constrained Unit Commitment Problem [J].
Bertsimas, Dimitris ;
Litvinov, Eugene ;
Sun, Xu Andy ;
Zhao, Jinye ;
Zheng, Tongxin .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (01) :52-63
[4]   Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion [J].
Bertsimas, Dimitris ;
Doan, Xuan Vinh ;
Natarajan, Karthik ;
Teo, Chung-Piaw .
MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (03) :580-602
[5]   Distributionally Robust Solution to the Reserve Scheduling Problem With Partial Information of Wind Power [J].
Bian, Qiaoyan ;
Xin, Huanhai ;
Wang, Zhen ;
Gan, Deqiang ;
Wong, Kit Po .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2015, 30 (05) :2822-2823
[6]   Geometric algorithm for multiparametric linear programming [J].
Borrelli, F ;
Bemporad, A ;
Morari, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (03) :515-540
[7]   A review of computer tools for analysing the integration of renewable energy into various energy systems [J].
Connolly, D. ;
Lund, H. ;
Mathiesen, B. V. ;
Leahy, M. .
APPLIED ENERGY, 2010, 87 (04) :1059-1082
[8]   Integration of intermittent renewable power supply using grid-connected vehicles - A 2030 case study for California and Germany [J].
Dallinger, David ;
Gerda, Schubert ;
Wietschel, Martin .
APPLIED ENERGY, 2013, 104 :666-682
[9]   Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems [J].
Delage, Erick ;
Ye, Yinyu .
OPERATIONS RESEARCH, 2010, 58 (03) :595-612
[10]   Stochastic joint optimization of wind generation and pumped-storage units in an electricity market [J].
Garcia-Gonzalez, Javier ;
Ruiz de la Muela, Rocio Moraga ;
Matres Santos, Luz ;
Mateo Gonzalez, Alicia .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2008, 23 (02) :460-468