Deep learning for C-reactive protein prediction

被引:2
作者
Dorraki, Mohsen [1 ]
Fouladzadeh, Anahita [2 ,3 ]
Allison, Andrew [1 ]
Coventry, Brendon J. [2 ,3 ]
Abbott, Derek [1 ]
机构
[1] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA, Australia
[2] Univ Adelaide, Dept Surg, Adelaide, SA, Australia
[3] Univ Adelaide, Tumour Immunotherapy Lab, Adelaide, SA, Australia
来源
2018 2ND EUROPEAN CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (EECS 2018) | 2018年
关键词
Biomedical engineering; forecasting; machine learning; recurrent neural networks; time series analysis; RECURRENT NEURAL-NETWORKS; SURVIVAL; CLASSIFICATION; SERUM; MODEL;
D O I
10.1109/EECS.2018.00037
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Neural networks have been extensively utilised to perform biosignal prediction over the last two decades. This study proposes a long short-term memory-based recurrent neural network, to predict future state in a C-reactive protein (CRP) time series from a given cancer patient. Experiments are conducted to demonstrate that a LSTM-based RNN is capable of CRP time series forecasting using data obtained from ten patients with melanoma. Since CRP is biomarker of immune system activity, the ability to forecast can potentially guide clinical decisions in cancer treatments.
引用
收藏
页码:160 / 164
页数:5
相关论文
共 37 条
[1]   Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry [J].
Aicha, Ahmed Nait ;
Englebienne, Gwenn ;
van Schooten, Kimberley S. ;
Pijnappels, Mirjam ;
Krose, Ben .
SENSORS, 2018, 18 (05)
[2]   C-reactive protein (CRP) as a predictive marker for immunotherapy in lung cancer. [J].
Brustugun, Odd Terje ;
Sprauten, Mette ;
Helland, Aslaug .
JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (15)
[3]   CRP identifies homeostatic immune oscillations in cancer patients: a potential treatment targeting tool? [J].
Coventry, Brendon J. ;
Ashdown, Martin L. ;
Quinn, Michael A. ;
Markovic, Svetomir N. ;
Yatomi-Clarke, Steven L. ;
Robinson, Andrew P. .
JOURNAL OF TRANSLATIONAL MEDICINE, 2009, 7
[4]   On detection of periodicity in C-reactive protein (CRP) levels [J].
Dorraki, Mohsen ;
Fouladzadeh, Anahita ;
Salamon, Stephen J. ;
Allison, Andrew ;
Coventry, Brendon J. ;
Abbott, Derek .
SCIENTIFIC REPORTS, 2018, 8
[5]  
Erlandsen EJ, 2000, SCAND J CLIN LAB INV, V60, P37
[6]   Learning to forget: Continual prediction with LSTM [J].
Gers, FA ;
Schmidhuber, J ;
Cummins, F .
NEURAL COMPUTATION, 2000, 12 (10) :2451-2471
[7]   Character-level neural network for biomedical named entity recognition [J].
Gridach, Mourad .
JOURNAL OF BIOMEDICAL INFORMATICS, 2017, 70 :85-91
[8]   Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks [J].
Hanson, Jack ;
Yang, Yuedong ;
Paliwal, Kuldip ;
Zhou, Yaoqi .
BIOINFORMATICS, 2017, 33 (05) :685-692
[9]  
Herszényi L, 2010, EUR REV MED PHARMACO, V14, P249
[10]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]