Equivalence of viscosity and weak solutions for the p(x)-Laplacian

被引:30
作者
Juutinen, Petri [1 ]
Lukkari, Teemu [2 ]
Parviainen, Mikko [3 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, FIN-40014 Jyvaskyla, Finland
[2] NTNU, Dept Math Sci, NO-7491 Trondheim, Norway
[3] Aalto Univ, Sch Sci & Technol, Inst Math, FI-00076 Aalto, Finland
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2010年 / 27卷 / 06期
关键词
Comparison principle; Viscosity solutions Uniqueness p(lambda); Superharmonic functions; Rado type theorem Removability; FUNCTIONALS;
D O I
10.1016/j.anihpc.2010.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider different notions of solutions to the p(lambda) Laplace equation -div(vertical bar Du(x)vertical bar(p(lambda)-2) Du(x)) = 0 with 1 < p(x) < infinity We show by proving a comparison principle that viscosity supersolutions and p(x)-superharmonic functions of nonlinear potential theory coincide This implies that weak and viscosity solutions are the same class of functions and that viscosity solutions to Dirichlet problems are unique As an application we prove a Rado type removability theorem (C) 2010 Elsevier Masson SAS All rights reserved
引用
收藏
页码:1471 / 1487
页数:17
相关论文
共 27 条
[1]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[2]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[3]   Mappings of Finite Distortion and PDE with Nonstandard Growth [J].
Adamowicz, Tomasz ;
Hasto, Peter .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (10) :1940-1965
[4]  
[Anonymous], 1997, DIFF EQUAT+
[5]  
Bieske T, 2006, ANN ACAD SCI FENN-M, V31, P363
[6]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[7]   Holder continuity of the gradient of p(x)-harmonic mappings [J].
Coscia, A ;
Mingione, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (04) :363-368
[8]  
Crandall MG, 1997, LECT NOTES MATH, V1660, P1
[9]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[10]  
Diening L, 2004, MATH INEQUAL APPL, V7, P245