Randomized Iterative Algorithms for Fisher Discriminant Analysis

被引:0
|
作者
Chowdhury, Agniva [1 ]
Yang, Jiasen [1 ]
Drineas, Petros [2 ]
机构
[1] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
来源
35TH UNCERTAINTY IN ARTIFICIAL INTELLIGENCE CONFERENCE (UAI 2019) | 2020年 / 115卷
关键词
MONTE-CARLO ALGORITHMS; FAST IMPLEMENTATION; RECOGNITION; APPROXIMATION; MATRICES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fisher discriminant analysis (FDA) is a widely used method for classification and dimensionality reduction. When the number of predictor variables greatly exceeds the number of observations, one of the alternatives for conventional FDA is regularized Fisher discriminant analysis (RFDA). In this paper, we present a simple, iterative, sketching-based algorithm for RFDA that comes with provable accuracy guarantees when compared to the conventional approach. Our analysis builds upon two simple structural results that boil down to randomized matrix multiplication, a fundamental and well-understood primitive of randomized linear algebra. We analyze the behavior of RFDA when leverage scores and ridge leverage scores are used to select predictor variables, and prove that accurate approximations can be achieved by a sample whose size depends on the effective degrees of freedom of the RFDA problem. Our results yield significant improvements over existing approaches and our empirical evaluations support our theoretical analyses.
引用
收藏
页码:239 / 249
页数:11
相关论文
共 50 条
  • [1] Fast Fisher discriminant analysis with randomized algorithms
    Ye, Haishan
    Li, Yujun
    Chen, Cheng
    Zhang, Zhihua
    PATTERN RECOGNITION, 2017, 72 : 82 - 92
  • [2] KLDA - An iterative approach to fisher discriminant analysis
    Lu, Fangfang
    Li, Hongdong
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 765 - 768
  • [3] Classification of Encryption Algorithms using Fisher's Discriminant Analysis
    Ray, Prabhat Kumar
    Kant, Shri
    Roy, Bimal K.
    Basu, Ayanendranath
    DEFENCE SCIENCE JOURNAL, 2017, 67 (01) : 59 - 65
  • [4] Bearing Fault Diagnosis Based on Randomized Fisher Discriminant Analysis
    Ye, Hejun
    Wu, Ping
    Huo, Yifei
    Wang, Xuemei
    He, Yuchen
    Zhang, Xujie
    Gao, Jinfeng
    SENSORS, 2022, 22 (21)
  • [5] Probabilistic Fisher discriminant analysis: A robust and flexible alternative to Fisher discriminant analysis
    Bouveyron, Charles
    Brunet, Camille
    NEUROCOMPUTING, 2012, 90 : 12 - 22
  • [6] Deep Fisher Discriminant Analysis
    Diaz-Vico, David
    Omari, Adil
    Torres-Barran, Alberto
    Ramon Dorronsoro, Jose
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT II, 2017, 10306 : 501 - 512
  • [7] Ranking Fisher discriminant analysis
    Ji, Zhong
    Jing, Peiguang
    Yu, Tianshi
    Su, Yuting
    Liu, Changshu
    NEUROCOMPUTING, 2013, 120 : 54 - 60
  • [8] Comparative Performance of Classical Fisher Linear Discriminant Analysis and Robust Fisher Linear Discriminant Analysis
    Okwonu, Friday Zinzendoff
    Othman, Abdul Rahman
    MATEMATIKA, 2013, 29 (01) : 213 - 220
  • [9] Sparse Kernel Fisher Discriminant Analysis
    Xing, HJ
    Yang, YJ
    Wang, Y
    Hu, BG
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS, 2005, 3496 : 824 - 830
  • [10] A novel method for Fisher discriminant analysis
    Xu, Y
    Yang, JY
    Jin, Z
    PATTERN RECOGNITION, 2004, 37 (02) : 381 - 384