COHOMOLOGICAL DIMENSION FILTRATION AND ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES

被引:10
作者
Atazadeh, Ali [1 ]
Sedghi, Monireh [1 ]
Naghipour, Reza [2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Univ Tabriz, Dept Math, Tabriz, Iran
关键词
annihilator; attached primes; cohomological dimension; local cohomology;
D O I
10.4064/cm139-1-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a denote an ideal in a Noetherian ring R, and M a finitely generated R-module. We introduce the concept of the cohomological dimension filtration M = {M-i}(i-0)(c) , where c = cd (a, M) and M-i denotes the largest submodule of M such that cd (a, M-i) <= i . Some properties of this filtration are investigated. In particular, if (R, m) is local and c = dim M, we are able to determine the annihilator of the top local cohomology module H-a(c) (M), namely Ann(R) (H-a(c) (M)) - Ann(R) (M/Mc-1). As a consequence, there exists an ideal b of R such that Ann(R) (H-a(c) (M)) = Ann(R) (M/H-b(0) (M)). This generalizes the main results of Bahmanpour et al. (2012) and Lynch (2012).
引用
收藏
页码:25 / 35
页数:11
相关论文
共 19 条
[1]   A NOTE ON THE ARTINIAN COFINITE MODULES [J].
Abazari, Nemat ;
Bahmanpour, Kamal .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (03) :1270-1275
[2]   On the annihilators of local cohomology modules [J].
Bahmanpour, Kamal ;
A'zami, Jafar ;
Ghasemi, Ghader .
JOURNAL OF ALGEBRA, 2012, 363 :8-13
[3]  
Bourbaki N., 1972, Commutative Algebra
[4]  
Brodmann M. P., 1998, LOCAL COHOMOLOGY ALG
[5]   Top local cohomology and the catenaricity of the unmixed support of a finitely generated module [J].
Cuong, Nguyen Tu ;
Dung, Nguyen Thi ;
Nhan, Le Thanh .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (05) :1691-1701
[6]   Cofinite modules and local cohomology [J].
Delfino, D ;
Marley, T .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 121 (01) :45-52
[7]   Attached primes of the top local cohomology modules with respect to an ideal [J].
Dibaei, MT ;
Yassemi, S .
ARCHIV DER MATHEMATIK, 2005, 84 (04) :292-297
[8]   Cohomological dimension of certain algebraic varieties [J].
Divaani-Aazar, K ;
Naghipour, R ;
Tousi, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (12) :3537-3544
[9]   Vanishing of the top local cohomology modules over Noetherian rings [J].
Divaani-Aazar, Kamran .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (01) :23-35
[10]   AFFINE DUALITY AND COFINITENESS [J].
HARTSHORNE, R .
INVENTIONES MATHEMATICAE, 1970, 9 (02) :145-+