Confinement and Lack of Thermalization after Quenches in the Bosonic Schwinger Model

被引:62
作者
Chanda, Titas [1 ]
Zakrzewski, Jakub [1 ,2 ]
Lewenstein, Maciej [3 ,4 ]
Tagliacozzo, Luca [5 ,6 ,7 ,8 ]
机构
[1] Uniwersytet Jagiellonski, Inst Fizyki Teoretycznej, Lojasiewicza 11, Krakow 30348, Poland
[2] Uniwersytet Jagiellonski, Mark Kac Complex Syst Res Ctr, Lojasiewicza 11, Krakow 30348, Poland
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[4] ICREA, Passeig Lluis Co 23, Barcelona 08010, Spain
[5] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[6] Univ Strathclyde, SUPA, Glasgow G4 0NG, Lanark, Scotland
[7] Univ Barcelona, Dept Fis Quant & Astrofis, Marti I Franques 1, Barcelona 08028, Catalonia, Spain
[8] Univ Barcelona, Inst Ciencies Cosmos ICCUB, Marti I Franques 1, Barcelona 08028, Catalonia, Spain
关键词
MATRIX PRODUCT STATES; GAUGE-INVARIANCE; QUANTUM; LATTICE; DYNAMICS; FORMULATION; FIELD;
D O I
10.1103/PhysRevLett.124.180602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We excite the vacuum of a relativistic theory of bosons coupled to a U(1) gauge field in 1 + 1 dimensions (bosonic Schwinger model) out of equilibrium by creating a spatially separated particle-antiparticle pair connected by a string of electric field. During the evolution, we observe a strong confinement of bosons witnessed by the bending of their light cone, reminiscent of what has been observed for the Ising model [Nat. Phys. 13, 246 (2017)]. As a consequence, for the timescales we are able to simulate, the system evades thermalization and generates exotic asymptotic states. These states are made of two disjoint regions, an external deconfined region that seems to thermalize, and an inner core that reveals an area-law saturation of the entanglement entropy.
引用
收藏
页数:7
相关论文
共 109 条
[1]   Holographic relaxation of finite size isolated quantum systems [J].
Abajo-Arrastia, Javier ;
da Silva, Emilia ;
Lopez, Esperanza ;
Mas, Javier ;
Serantes, Alexandre .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (05) :1-33
[2]   Recent progress in many-body localization [J].
Abanin, Dmitry A. ;
Papic, Zlatko .
ANNALEN DER PHYSIK, 2017, 529 (07)
[3]   Massive Schwinger model within mass perturbation theory [J].
Adam, C .
ANNALS OF PHYSICS, 1997, 259 (01) :1-63
[4]   Many-body localization: An introduction and selected topics [J].
Alet, Fabien ;
Laflorencie, Nicolas .
COMPTES RENDUS PHYSIQUE, 2018, 19 (06) :498-525
[5]  
[Anonymous], ARXIV14041391
[6]  
[Anonymous], 1918, NACHR GES WISS GOTT
[7]   Thermal evolution of the Schwinger model with matrix product operators [J].
Banuls, M. C. ;
Cichy, K. ;
Cirac, J. I. ;
Jansen, K. ;
Saito, H. .
PHYSICAL REVIEW D, 2015, 92 (03)
[8]   The mass spectrum of the Schwinger model with matrix product states [J].
Banuls, M. C. ;
Cichy, K. ;
Cirac, J. I. ;
Jansen, K. .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11)
[9]   Efficient Basis Formulation for (1+1)-Dimensional SU(2) Lattice Gauge Theory: Spectral Calculations with Matrix Product States [J].
Banuls, Mari Carmen ;
Cichy, Krzysztof ;
Cirac, J. Ignacio ;
Jansen, Karl ;
Kuehn, Stefan .
PHYSICAL REVIEW X, 2017, 7 (04)
[10]   Density Induced Phase Transitions in the Schwinger Model: A Study with Matrix Product States [J].
Banuls, Mari Carmen ;
Cichy, Krzysztof ;
Cirac, J. Ignacio ;
Jansen, Karl ;
Kuehn, Stefan .
PHYSICAL REVIEW LETTERS, 2017, 118 (07)