gDesigner: computational design of synthetic gRNAs for Cas12a-based transcriptional repression in mammalian cells

被引:3
作者
Crone, Michael A. [1 ,2 ,3 ]
MacDonald, James T. [1 ]
Freemont, Paul S. [1 ,2 ,3 ]
Siciliano, Velia [1 ,4 ]
机构
[1] Imperial Coll London, Dept Infect Dis, Sect Struct & Synthet Biol, London, England
[2] Imperial Coll London, UK Dementia Res Inst Ctr Care Res & Technol, London, England
[3] Imperial Coll Translat & Innovat Hub, London Biofoundry, White City Campus,84 Wood Lane, London, England
[4] Ist Italiano Tecnol IIT, Dept Synthet & Syst Biol Biomed, Genoa, Italy
基金
英国生物技术与生命科学研究理事会; 欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
PROTEIN-BASED PARTS; METABOLIC BURDEN; RNA; CIRCUITS; DEVICES; CPF1; SPECIFICITY; CLIQUES; SITES;
D O I
10.1038/s41540-022-00241-w
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Synthetic networks require complex intertwined genetic regulation often relying on transcriptional activation or repression of target genes. CRISPRi-based transcription factors facilitate the programmable modulation of endogenous or synthetic promoter activity and the process can be optimised by using software to select appropriate gRNAs and limit non-specific gene modulation. Here, we develop a computational software pipeline, gDesigner, that enables the automated selection of orthogonal gRNAs with minimized off-target effects and promoter crosstalk. We next engineered a Lachnospiraceae bacterium Cas12a (dLbCas12a)-based repression system that downregulates target gene expression by means of steric hindrance of the cognate promoter. Finally, we generated a library of orthogonal synthetic dCas12a-repressed promoters and experimentally demonstrated it in HEK293FT, U2OS and H1299 cells lines. Our system expands the toolkit of mammalian synthetic promoters with a new complementary and orthogonal CRISPRi-based system, ultimately enabling the design of synthetic promoter libraries for multiplex gene perturbation that facilitate the understanding of complex cellular phenotypes.
引用
收藏
页数:7
相关论文
共 50 条
[1]   Network motifs: theory and experimental approaches [J].
Alon, Uri .
NATURE REVIEWS GENETICS, 2007, 8 (06) :450-461
[2]   Secondary structure prediction of interacting RNA molecules [J].
Andronescu, M ;
Zhang, ZC ;
Condon, A .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 345 (05) :987-1001
[3]   Engineering Gene Circuits for Mammalian Cell-Based Applications [J].
Auslander, Simon ;
Fussenegger, Martin .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2016, 8 (07)
[4]   Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases [J].
Bae, Sangsu ;
Park, Jeongbin ;
Kim, Jin-Soo .
BIOINFORMATICS, 2014, 30 (10) :1473-1475
[5]   An End-to-End Workflow for Engineering of Biological Networks from High-Level Specifications [J].
Beal, Jacob ;
Weiss, Ron ;
Densmore, Douglas ;
Adler, Aaron ;
Appleton, Evan ;
Babb, Jonathan ;
Bhatia, Swapnil ;
Davidsohn, Noah ;
Haddock, Traci ;
Loyall, Joseph ;
Schantz, Richard ;
Vasilev, Viktor ;
Yaman, Fusun .
ACS SYNTHETIC BIOLOGY, 2012, 1 (08) :317-331
[6]  
Bird J., 2007, Engineering mathematics, V5
[7]  
Bonfá G, 2021, METHODS MOL BIOL, V2229, P331, DOI 10.1007/978-1-0716-1032-9_16
[8]   FINDING ALL CLIQUES OF AN UNDIRECTED GRAPH [H] [J].
BRON, C ;
KERBOSCH, J .
COMMUNICATIONS OF THE ACM, 1973, 16 (09) :575-577
[9]   A note on the problem of reporting maximal cliques [J].
Calzals, F. ;
Karande, C. .
THEORETICAL COMPUTER SCIENCE, 2008, 407 (1-3) :564-568
[10]   R2oDNA Designer: Computational Design of Biologically Neutral Synthetic DNA Sequences [J].
Casini, Arturo ;
Christodoulou, Georgia ;
Freemont, Paul S. ;
Baldwin, Geoff S. ;
Ellis, Tom ;
MacDonald, James T. .
ACS SYNTHETIC BIOLOGY, 2014, 3 (08) :525-528