iTRAQ-Based Proteomic Analysis Reveals Several Strategies to Cope with Drought Stress in Maize Seedlings

被引:16
|
作者
Jiang, Zhilei [1 ]
Jin, Fengxue [1 ]
Shan, Xiaohui [2 ]
Li, Yidan [1 ]
机构
[1] Jilin Acad Agr Sci, Jilin Prov Key Lab Agr Biotechnol, Inst Agr Biotechnol, Changchun 130033, Jilin, Peoples R China
[2] Jilin Univ, Coll Plant Sci, Changchun 130062, Jilin, Peoples R China
关键词
iTRAQ; proteomics; drought stress; differentially accumulated protein species (DAPS); Zea mays L; HISTONE DEACETYLASE HDA101; HEAT-SHOCK PROTEINS; ABIOTIC STRESS; ABSCISIC-ACID; LIPID-METABOLISM; WATER-STRESS; TOLERANCE; GENE; EXPRESSION; GIBBERELLIN;
D O I
10.3390/ijms20235956
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Drought stress, especially during the seedling stage, seriously limits the growth of maize and reduces production in the northeast of China. To investigate the molecular mechanisms of drought response in maize seedlings, proteome changes were analyzed. Using an isotopic tagging relative quantitation (iTRAQ) based method, a total of 207 differentially accumulated protein species (DAPS) were identified under drought stress in maize seedlings. The DAPS were classified into ten essential groups and analyzed thoroughly, which involved in signaling, osmotic regulation, protein synthesis and turnover, reactive oxygen species (ROS) scavenging, membrane trafficking, transcription related, cell structure and cell cycle, fatty acid metabolism, carbohydrate and energy metabolism, as well as photosynthesis and photorespiration. The enhancements of ROS scavenging, osmotic regulation, protein turnover, membrane trafficking, and photosynthesis may play important roles in improving drought tolerance of maize seedlings. Besides, the inhibitions of some protein synthesis and slowdown of cell division could reduce the growth rate and avoid excessive water loss, which is possible to be the main reasons for enhancing drought avoidance of maize seedlings. The incongruence between protein and transcript levels was expectedly observed in the process of confirming iTRAQ data by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, which further indicated that the multiplex post-transcriptional regulation and post-translational modification occurred in drought-stressed maize seedlings. Finally, a hypothetical strategy was proposed that maize seedlings coped with drought stress by improving drought tolerance (via. promoting osmotic adjustment and antioxidant capacity) and enhancing drought avoidance (via. reducing water loss). Our study provides valuable insight to mechanisms underlying drought response in maize seedlings.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings
    Wang, Xiaoyu
    Shan, Xiaohui
    Wu, Ying
    Su, Shengzhong
    Li, Shipeng
    Liu, Hongkui
    Han, Junyou
    Xue, Chunmei
    Yuan, Yaping
    JOURNAL OF PROTEOMICS, 2016, 146 : 14 - 24
  • [2] iTRAQ-based quantitative proteomic analysis provides insight into the drought-stress response in maize seedlings
    Ren, Wen
    Shi, Zi
    Zhou, Miaoyi
    Zhao, Bingbing
    Li, Hanshuai
    Wang, Jiarong
    Liu, Ya
    Zhao, Jiuran
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [3] Physiological and iTRAQ-based proteomic analyses reveal that melatonin alleviates oxidative damage in maize leaves exposed to drought stress
    Su, Xiaoyu
    Fan, Xiaocong
    Shao, Ruixin
    Guo, Jiameng
    Wang, Yongchao
    Yang, Jianping
    Yang, Qinghua
    Guo, Lin
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 142 : 263 - 274
  • [4] iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress
    Xie, He
    Yang, Da-Hai
    Yao, Heng
    Bai, Ge
    Zhang, Yi-Han
    Xiao, Bing-Guang
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2016, 469 (03) : 768 - 775
  • [5] iTRAQ-based quantitative proteomic analysis of heat stress-induced mechanisms in pepper seedlings
    Wang, Jing
    Liang, Chengliang
    Yang, Sha
    Song, Jingshuang
    Li, Xuefeng
    Dai, Xiongze
    Wang, Fei
    Juntawong, Niran
    Tan, Fangjun
    Zhang, Xilu
    Jiao, Chunhai
    Zou, Xuexiao
    Chen, Wenchao
    PEERJ, 2021, 9
  • [6] ITRAQ-Based Proteomic Analysis of The Response to Ralstonia solanacearum in Potato
    Feng, Jinlin
    Yao, Lixia
    Qin, Minghui
    Gao, Gang
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2022, 59 (02): : 165 - 171
  • [7] iTRAQ-Based Proteomic Analysis Reveals Protein Profile in Plasma from Children with Autism
    Shen, Liming
    Zhang, Kaoyuan
    Feng, Chengyun
    Chen, Youjiao
    Li, Shuiming
    Iqbal, Javed
    Liao, Liping
    Zhao, Yuxi
    Zhai, Jian
    PROTEOMICS CLINICAL APPLICATIONS, 2018, 12 (03)
  • [8] Identification of Salt Stress-Responsive Proteins in Maize (Zea may) Seedlings Using iTRAQ-Based Proteomic Technique
    Weng, Qiaoyun
    Zhao, Yanmin
    Zhao, Yanan
    Song, Xiaoqing
    Yuan, Jincheng
    Liu, Yinghui
    IRANIAN JOURNAL OF BIOTECHNOLOGY, 2021, 19 (01) : 106 - 120
  • [9] iTRAQ-based quantitative proteomic analysis of transgenic and non-transgenic maize seeds
    Liu, Weixiao
    Li, Liang
    Zhang, Zhe
    Dong, Mei
    Jin, Wujun
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2020, 92
  • [10] iTRAQ-based quantitative proteomic analysis of wheat roots in response to salt stress
    Jiang, Qiyan
    Li, Xiaojuan
    Niu, Fengjuan
    Sun, Xianjun
    Hu, Zheng
    Zhang, Hui
    PROTEOMICS, 2017, 17 (08)