Influence of steel fiber on compressive properties of ultra-high performance fiber-reinforced concrete

被引:65
|
作者
Yang, Jian [1 ,2 ]
Chen, Baochun [2 ,3 ]
Nuti, Camillo [4 ]
机构
[1] China Three Gorges Univ, Key Lab Geol Hazards Three Gorges Reservoir Area, Minist Educ, Yichang, Peoples R China
[2] Fuzhou Univ, Coll Civil Engn, Fuzhou, Peoples R China
[3] Natl Ctr Joint Int Res Bridges Technol Innovat &, Fuzhou, Peoples R China
[4] Univ Rome Tre, Dept Architecture, Rome, Italy
基金
美国国家科学基金会;
关键词
Ultra-high performance fiber-reinforced con-crete (UHPFRC); Steel fiber; Compressive strength; Flowability; Modulus of elasticity; Prediction formula; MECHANICAL-PROPERTIES; UNIAXIAL TENSILE; BEHAVIOR; STRENGTH; UHPC; DURABILITY; ELASTICITY; RATIO; MODEL;
D O I
10.1016/j.conbuildmat.2021.124104
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The compressive properties (include compressive strength and modulus of elasticity) of Ultra-high performance fiber-reinforced concrete (UHPFRC) are the most important performance index in structural design. This paper presents experimental results from tests conducted on 36 UHPFRCs with different volume fractions and aspect ratios of steel fiber to investigate the effect of steel fiber on the compressive properties of UHPFRC. The test results indicated that the compressive strength and modulus of elasticity of the hardened UHPFRC increase as the fiber volume fraction or aspect ratio increases. However, the increase trend of compressive strength and modulus of elasticity slowed down when the volume fraction exceeded 2%. It was observed that the steel fiber can restrain the occurrence and development of cracks when UHPFRC specimens are compressed, provided a positive effect for reinforcing UHPFRC, but it also reduced the flowability of fresh UHPFRC, which is negative for reinforcing effect. X-ray CT scanning revealed that the porosity and pore size of hardened UHPFRC increased with the increase of the fiber volume fraction due to its weakened flowability. A prediction model was established based on the analysis of the positive and negative effects of the steel fiber. Semi-empirical prediction formulas for the compressive strength and modulus of elasticity were proposed by regression analysis of the test data in this paper, which were verified and revised by the experimental database of 155 tests from literature. In addition, a relationship formula between modulus of elasticity and compressive strength of UHPFRC was presented, and was verified and revised by the experimental database of 320 tests conducted around the world.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Effect of High Temperature on the Mechanical Properties of Steel Fiber-Reinforced Concrete
    Bezerra, Augusto C. S.
    Maciel, Priscila S.
    Correa, Elaine C. S.
    Soares Junior, Paulo R. R.
    Aguilar, Maria T. P.
    Cetlin, Paulo R.
    FIBERS, 2019, 7 (12)
  • [22] Compressive Properties of Steel Fiber Reinforced Ultra High Strength Concrete
    Su, Jun
    Tao, Junlin
    Li, Tang
    Yin, Yan
    ADVANCED BUILDING MATERIALS, PTS 1-4, 2011, 250-253 (1-4): : 532 - 535
  • [23] Dynamic compression behavior of ultra-high performance concrete with hybrid polyoxymethylene fiber and steel fiber
    Lin, Jia-Xiang
    Su, Jia-Ying
    Pan, Hong-Shu
    Peng, Yu-Qi
    Guo, Yong-Chang
    Chen, Wei-Shan
    Sun, Xiao-Long
    Yuan, Bing-Xiang
    Liu, Guo-Tao
    Lan, Xue-Wei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 20 : 4473 - 4486
  • [24] Influence of steel slag and steel fiber on the mechanical properties, durability, and life cycle assessment of ultra-high performance geopolymer concrete
    Xu, Zikai
    Zhang, Jiupeng
    Zhang, Jiajun
    Deng, Qiquan
    Xue, Zhijia
    Huang, Guojing
    Huang, Xiaoming
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 441
  • [25] Stress-strain models for ultra-high performance concrete (UHPC) and ultra-high performance fiber-reinforced concrete (UHPFRC) under triaxial compression
    Zhang, S. S.
    Wang, J. J.
    Lin, Guan
    Yu, T.
    Fernando, D.
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 370
  • [26] Influence of Specimen Size and Fiber Content on Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete
    Kazemi, Sadegh
    Lubell, Adam S.
    ACI MATERIALS JOURNAL, 2012, 109 (06) : 675 - 684
  • [27] Steel Fiber-Matrix Interfacial Bond in Ultra-High Performance Concrete: A Review
    Deng, Yulin
    Zhang, Zuhua
    Shi, Caijun
    Wu, Zemei
    Zhang, Chaohui
    ENGINEERING, 2023, 22 : 215 - 232
  • [28] Effects of Steel Fiber Percentage and Aspect Ratios on Fresh and Harden Properties of Ultra-High Performance Fiber Reinforced Concrete
    Biswas, Rajib Kumar
    Bin Ahmed, Farabi
    Haque, Md. Ehsanul
    Provasha, Afra Anam
    Hasan, Zahid
    Hayat, Faria
    Sen, Debasish
    APPLIED MECHANICS, 2021, 2 (03): : 501 - 515
  • [29] Structural behavior of ultra-high performance (fiber-reinforced) concrete compression struts subjected to transverse tension and cracking
    Leutbecher, Torsten
    STRUCTURAL CONCRETE, 2020, 21 (05) : 2154 - 2167
  • [30] Tensile Creep Test of Fiber-Reinforced Ultra-High Performance Concrete
    Garas, Victor Y.
    Kahn, Lawrence F.
    Kurtis, Kimberly E.
    JOURNAL OF TESTING AND EVALUATION, 2010, 38 (06) : 674 - 682