Coexistence solutions for a reaction-diffusion system of un-stirred chemostat model

被引:10
|
作者
Zheng, SN [1 ]
Liu, J [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
chemostat; reaction-diffusion; degree theory; fixed point index; steady state;
D O I
10.1016/S0096-3003(02)00732-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a reaction-diffusion system of multiple food chain model, where two predators feed on a single prey growing in an tin-stirred chemostat. The conditions for the coexistence of steady states are determined. The main technique used here is the degree theory in cones. (C) 2002 Elsevier Inc. All rights reserved.
引用
收藏
页码:579 / 590
页数:12
相关论文
共 50 条
  • [41] On boundedness of solutions of reaction-diffusion equations with nonlinear boundary conditions
    Arrieta, Jose M.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (01) : 151 - 160
  • [42] EXACT SOLUTIONS OF HYPERBOLIC REACTION-DIFFUSION EQUATIONS IN TWO DIMENSIONS
    Broadbridge, P.
    Goard, J.
    ANZIAM JOURNAL, 2022, 64 (04) : 338 - 354
  • [43] Front propagation and segregation in a reaction-diffusion model with cross-diffusion
    del-Castillo-Negrete, D
    Carreras, BA
    Lynch, V
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 168 : 45 - 60
  • [44] A delay reaction-diffusion model of the spread of bacteriophage infection
    Gourley, SA
    Kuang, Y
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (02) : 550 - 566
  • [45] Bifurcation and Control of A Neuron Model with Delays and Reaction-diffusion
    Wang Ling
    Zhao Hongyong
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 3273 - 3278
  • [46] ON A FREE BOUNDARY PROBLEM FOR A NONLOCAL REACTION-DIFFUSION MODEL
    Cao, Jia-Feng
    Li, Wan-Tong
    Zhao, Meng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (10): : 4117 - 4139
  • [47] ANALYSIS OF A REACTION-DIFFUSION EPIDEMIC MODEL WITH ASYMPTOMATIC TRANSMISSION
    Fitzgibbon, W. E.
    Morgan, J. J.
    Webb, G. F.
    Wu, Y.
    JOURNAL OF BIOLOGICAL SYSTEMS, 2020, 28 (03) : 561 - 587
  • [48] Oscillatory Turing patterns in a simple reaction-diffusion system
    Liu, Ruey-Tarng
    Liaw, Sy-Sang
    Maini, Philip K.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2007, 50 (01) : 234 - 238
  • [49] Synchronized stability in a reaction-diffusion neural network model
    Wang, Ling
    Zhao, Hongyong
    PHYSICS LETTERS A, 2014, 378 (48) : 3586 - 3599
  • [50] Enhancement of combustion by drift in a coupled reaction-diffusion model
    Markely, LRA
    Andrzejewski, D
    Butzlaff, E
    Kiselev, A
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2006, 4 (01) : 213 - 225