Graphical processing unit (GPU) acceleration for numerical solution of population balance models using high resolution finite volume algorithm

被引:41
作者
Szilagyi, Botond [1 ]
Nagy, Zoltan K. [2 ,3 ]
机构
[1] Univ Babes Bolyai, Dept Chem Engn, Arany Janos St 1, Cluj Napoca 400028, Romania
[2] Univ Loughborough, Dept Chem Engn, Loughborough LE11 3TU, Leics, England
[3] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA
基金
欧洲研究理事会;
关键词
Population balance modelling; Finite volume algorithm; GPU; Crystallization modelling; SIZE DISTRIBUTION CONTROL; MONTE-CARLO-SIMULATION; CRYSTALLIZATION PROCESSES; PARTICULATE PROCESSES; QUADRATURE METHOD; PARALLEL; MOMENTS; DYNAMICS; SCHEMES;
D O I
10.1016/j.compchemeng.2016.03.023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Population balance modeling is a widely used approach to describe crystallization processes. It can be extended to multivariate cases where more internal coordinates i.e., particle properties such as multiple characteristic sizes, composition, purity, etc. can be used. The current study presents highly efficient fully discretized parallel implementation of the high resolution finite volume technique implemented on graphical processing units (GPUs) for the solution of single- and multi-dimensional population balance models (PBMs). The proposed GPU-PBM is implemented using CUDA C++ code for GPU calculations and provides a generic Matlab interface for easy application for scientific computing. The case studies demonstrate that the code running on the GPU is between 2-40 times faster than the compiled C++ code and 50-250 times faster than the standard MatLab implementation. This significant improvement in computational time enables the application of model-based control approaches in real time even in case of multidimensional population balance models. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:167 / 181
页数:15
相关论文
共 32 条
[1]   Optimal seed recipe design for crystal size distribution control for batch cooling crystallisation processes [J].
Aamir, E. ;
Nagy, Z. K. ;
Rielly, C. D. .
CHEMICAL ENGINEERING SCIENCE, 2010, 65 (11) :3602-3614
[2]   Combined Quadrature Method of Moments and Method of Characteristics Approach for Efficient Solution of Population Balance Models for Dynamic Modeling and Crystal Size Distribution Control of Crystallization Processes [J].
Aamir, E. ;
Nagy, Z. K. ;
Rielly, C. D. ;
Kleinert, T. ;
Judat, B. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (18) :8575-8584
[3]  
Aamir E., 2010, THESIS
[4]  
[Anonymous], 2002, Cambridge Texts in Applied Mathematics, DOI [10.1017/CBO9780511791253, DOI 10.1017/CBO9780511791253]
[5]   Modelling and simulation of suspension polymerization of vinyl chloride via population balance model [J].
Barkanyi, Agnes ;
Nemeth, Sandor ;
Lakatos, Bela G. .
COMPUTERS & CHEMICAL ENGINEERING, 2013, 59 :211-218
[6]   Investigation and simulation of crystallization of high aspect ratio crystals with fragmentation [J].
Borsos, Akos ;
Lakatos, Bela G. .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2014, 92 (06) :1133-1141
[7]  
Cook S., 2012, CUDA PROGRAMMING
[8]   Method of moments with interpolative closure [J].
Frenklach, M .
CHEMICAL ENGINEERING SCIENCE, 2002, 57 (12) :2229-2239
[9]   High resolution algorithms for multidimensional population balance equations [J].
Gunawan, R ;
Fusman, I ;
Braatz, RD .
AICHE JOURNAL, 2004, 50 (11) :2738-2749
[10]   Parallel high-resolution finite volume simulation of particulate processes [J].
Gunawan, Rudiyanto ;
Fusman, Irene ;
Braatz, Richard D. .
AICHE JOURNAL, 2008, 54 (06) :1449-1458