Visible lattice points and the Extended Lindelof Hypothesis

被引:3
作者
Takeda, Wataru [1 ]
机构
[1] Kyoto Univ, Dept Math, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan
关键词
Dedekind zeta function; Extended Lindeloff Hypothesis; Gauss Circle Problem; Asymptotic behavior;
D O I
10.1016/j.jnt.2017.04.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the number of visible lattice points under the assumption of the Extended Lindelof Hypothesis. We get a relation between visible lattice points and the Extended Lindelof Hypothesis. And we also get a relation between visible lattice points over Q(root-1) and the Gauss Circle Problem. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:297 / 309
页数:13
相关论文
共 10 条
[1]  
Apostol T.M., 1976, INTRO ANAL NUMBER TH
[2]  
Backlund R. J., 1918, Ofversigt Finska Vetensk. Soc., V61A
[3]  
Hardy GH., 1915, Q J MATH, V46, P263
[4]  
Huxley MN, 2002, NUMBER THEORY FOR THE MILLENNIUM II, P275
[5]  
Landau E., 1915, AKAD WISS GOTTINGEN, V5, P161
[6]  
Lang S., 1994, ALGEBRAIC NUMBER THE
[7]   Asymptotic evaluation of certain Totient sums. [J].
Lehmer, DN .
AMERICAN JOURNAL OF MATHEMATICS, 1900, 22 :293-335
[8]  
Riemann B., 1859, ON THE NUMBER OF PRI, P671
[9]   The probability that random algebraic integers are relatively r-prime [J].
Sittinger, Brian D. .
JOURNAL OF NUMBER THEORY, 2010, 130 (01) :164-171
[10]  
Takeda W., 2016, EXACT ORDER NUMBER L