A generalized Harish-Chandra isomorphism

被引:16
作者
Khoroshkin, Sergey [1 ,2 ]
Nazarov, Maxim [3 ]
Vinberg, Ernest [4 ]
机构
[1] Inst Theoret & Expt Phys, Moscow 117259, Russia
[2] Higher Sch Econ, Dept Math, Moscow 117312, Russia
[3] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[4] Moscow MV Lomonosov State Univ, Dept Math, Moscow 119992, Russia
基金
英国工程与自然科学研究理事会;
关键词
Chevalley theorem; Harish-Chandra isomorphism; Zhelobenko operator; MICKELSSON ALGEBRAS; WEYL GROUPS; REPRESENTATIONS; OPERATORS; MODULES; THEOREM;
D O I
10.1016/j.aim.2010.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any complex reductive Lie algebra g and any locally finite g-module V, we extend to the tensor product U(g) circle times V the Harish-Chandra description of g-invariants in the universal enveloping algebra U(g). (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1168 / 1180
页数:13
相关论文
共 44 条
[21]   Smooth Fr,chet globalizations of Harish-Chandra modules [J].
Bernstein, Joseph ;
Kroetz, Bernhard .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (01) :45-111
[22]   Multi-fusion categories of Harish-Chandra bimodules [J].
Ostrik, Victor .
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, :121-142
[23]   Harish-Chandra modules for map and affine Lie superalgebras [J].
Calixto, Lucas ;
Futorny, Vyacheslav ;
Rocha, Henrique .
ISRAEL JOURNAL OF MATHEMATICS, 2025,
[24]   Harish-Chandra bimodules over rational Cherednik algebras [J].
Simental, Jose .
ADVANCES IN MATHEMATICS, 2017, 317 :299-349
[25]   Irreducible Harish-Chandra modules over extended Witt algebras [J].
Guo, Xiangqian ;
Liu, Genqiang ;
Zhao, Kaiming .
ARKIV FOR MATEMATIK, 2014, 52 (01) :99-112
[26]   On the cells and associated varieties of highest weight Harish-Chandra modules [J].
Bai, Zhanqiang ;
Bao, Yixin ;
Liang, Zhao ;
Xie, Xun .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2025, 36 (07)
[27]   A fixed point formula and Harish-Chandra's character formula [J].
Hochs, Peter ;
Wang, Hang .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 116 :1-32
[28]   DIRAC INEQUALITY FOR HIGHEST WEIGHT HARISH-CHANDRA MODULES II [J].
Pandzic, Pavle ;
Prlic, Ana ;
Soucek, Vladimir ;
Tucek, Vit .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2023, 26 (03) :729-760
[29]   GENERALIZED HARISH-CHANDRA DESCENT, GELFAND PAIRS, AND AN ARCHIMEDEAN ANALOG OF JACQUET-RALLIS'S THEOREM [J].
Aizenbud, Avraham ;
Gourevitch, Dmitry ;
Sayag, Eitan .
DUKE MATHEMATICAL JOURNAL, 2009, 149 (03) :509-567
[30]   HARISH-CHANDRA MODULES OVER THE Q HEISENBERG-VIRASORO ALGEBRA [J].
Guo, Xiangqian ;
Liu, Xuewen ;
Zhao, Kaiming .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 89 (01) :9-15